是平整表面不平坦还是产生排水量,Iko Permascreed Li经过精心设计,以满足现代建筑项目的需求,使其成为效率和生态意识设计的明智选择。•较低体现的碳,Iko Permascreed Li有助于实现客户的可持续性目标。•全球变暖潜力的减少高达每吨73.44千克(*第三方EPD验证待处理)•零含水量,增强其环保性易于友好型。•快速设置公式,安装后仅一小时就可以行走。•简化的工作流消除了其他交易的延迟,从而提高了整体现场效率。•不受天气影响,可以全年安装。•柔性厚度,标称10mm – 40mm层(多个层的选项)。•与传统的混凝土筛选相比,体重减轻。•优化的排水量符合BS6229:2018标准。•不透水,有助于提供暂时的防水。•耐用且持久,设计为60多年的使用寿命。
是平整表面不平坦还是产生排水量,Iko Permascreed Li经过精心设计,以满足现代建筑项目的需求,使其成为效率和生态意识设计的明智选择。•较低体现的碳,Iko Permascreed Li有助于实现客户的可持续性目标。•全球变暖潜力的减少每吨高达73.44千克(第三方EPD认证)•独立认证的EPD,展示了该产品的环境影响降低,有助于减少范围3排放。•零含水量,增强其环保型概况。•快速设置公式,安装后仅一小时就可以行走。•简化的工作流消除了其他交易的延迟,从而提高了整体现场效率。•无需启动,简化应用程序,因为它直接与基于沥青的防水系统键合。•柔性厚度,适用于10mm – 40mm层(多个层的选项)。•与传统的沙子和水泥丝网相比,体重减轻。•优化的排水量符合BS6229:2018标准。•不透水,消除了与吸水和汇集有关的风险。•耐用且持久,设计为60多年的使用寿命。
与其他脑肿瘤不同,关于原发性中枢神经系统 (CNS) 淋巴瘤的自动分割研究很少。这是一项具有挑战性的任务,因为肿瘤及其边界的模式高度多变。在这项工作中,我们提出了一种新的损失函数来控制边界不规则性,用于基于深度学习的原发性 CNS 淋巴瘤自动分割。我们引入了一种边界不规则损失,它基于分割和平滑版本的比较。边界不规则损失与之前提出的拓扑损失相结合,以更好地控制不同的连通分量。该方法是通用的,可以用于任何分割网络。我们研究了 99 名原发性 CNS 淋巴瘤患者。从一开始就分离出 40 名患者并形成独立测试集。分割是在对比后 T1 加权 MRI 上进行的。MRI 是在临床常规中获得的,并且高度异质。所提出的方法在各种评估指标上的表现都大大优于基线(Dice 分数高出 6 个百分点,Hausdorff 距离高出 40 毫米,平均表面距离高出 6 毫米)。然而,总体表现一般,突显出自动分割原发性中枢神经系统淋巴瘤是一项艰巨的任务,尤其是在处理临床常规 MRI 时。代码可在此处公开获取:https://github.com/rosanajurdi/LymphSeg 。
规格 • 获得 EU MED“Wheelmark”和 FCC/USCG 批准 • 还获得希腊、印度、乌克兰等国批准... - 请查看网站了解最新批准 • 专为 SOLAS“随身携带”和集成救生筏和游艇手提包应用而设计 • 超薄(厚度仅为 40 毫米!)、重量轻、自动或手动激活 • S.701 – C/O 型号包括安装支架、10 米浮力系绳和安装带 • 指定 S.701- L/R 型号用于救生筏/游艇 • 伸缩安装杆选项 S.701MP • 频率范围:X 波段,9.2 至 9.5 GHz • 规格:IEC 1097-1 1992、IEC 90645、IMO 694(17) • 符合海事设备指令和 USCG/FCC 要求。• 无害电池:SevenStar S.701B 型。(每 5 年更换一次) • Tx 功率:> 400mW (+26 dBm) • Rx 灵敏度:优于 –50 dBm • 使用寿命:待机模式下大于 96 小时,活动模式下大于 8 小时 - 传输(以 1 kHz 速率) • 机身为符合 BS4800/10E53 的高可见度黄色 • 指示:正面高亮度 LED • 温度范围:工作:-20/+55 摄氏度 • 温度范围:存储:-30/+70 摄氏度 • 防水深度达 10 米 • SART 尺寸:332 x 80 x 40 毫米。(13.1” x 3.2” x 1.6”) • 重量:390 克(不含支架) • 纸箱尺寸(含支架):420 x 120 x 100 毫米
带有安全门禁电话系统的公共前门可通往维护良好的公共入口走廊,走廊上有通往所有三间公寓的门和一个大型公共自行车储藏室。这所完美无瑕的住宅的私人前门通向入口走廊,走廊设有通往卧室和浴室的楼梯,门通向厨房/早餐室。这间现代化的厨房配备了一系列落地和壁挂式“Benchmarx”橄榄绿色振动筛式单元、40 毫米实心橡木台面以及包括洗碗机和冰箱/冰柜在内的一体化电器。这个时尚的空间有足够的空间容纳一张小早餐桌。大型双开门通向大小适中、朝西的客厅/餐厅,客厅/餐厅铺设了与厨房相同的狮子橡木复合地板。这间房间朝西,配有大窗户和双开门,可通往私人阳光露台,明亮通风,有空间容纳沙发和餐桌。地下一层是主双人卧室,面积宽敞,为 13 英尺 05 英寸 x 11 英尺 05 英寸,还配有嵌入式衣柜。还有一间办公室/书房,可以用作“卧室”。宽敞的现代浴室配有地暖,配有全套四件套白色卫浴用品,包括步入式淋浴间、浴缸、马桶和洗手盆。浴室旁边是杂物间,可以放置叠放式洗衣机和滚筒式烘干机。
• 典型的太阳能电池阵列由多个太阳能光伏模块组成。这些模块通常为 1.8mx 1.0m,厚度约为 40mm,每个模块重约 20kg。• 模块通过安装系统固定在屋顶上,安装系统是一套金属轨道、夹具和挂钩系统,可将阵列牢固地固定在屋顶上。模块可以横向(水平)或纵向(垂直)排列。这取决于屋顶的方向、所需的面板数量以及现有的屋顶障碍物(烟囱、天窗等)。• 电缆通常从光伏阵列延伸到家中的逆变器。逆变器是将光伏产生的直流电转换为交流电的机制。该逆变器的尺寸将与您的太阳能电池阵列的尺寸相匹配。如果您正在安装电池,或者计划在未来安装电池,则需要混合逆变器。• 可选附件包括电池和热水分流器。 • 电池是一种储能解决方案,可让您储存太阳能产生的多余能量,以供日后在家中使用。电池还允许您在夜间从电网充电,从而进一步降低能源成本。在决定是否安装电池时,有几个变量需要考虑,您应该与您的太阳能光伏公司进行彻底研究和讨论。• 热水分流器可让您将太阳能光伏产生的多余能量转移到加热水箱中的热水。这是最大限度地利用太阳能光伏系统产生的能量的一种经济有效的方式。• 现在大多数太阳能光伏系统都配备了能源监控系统,或者与以后可以添加的监控器兼容。这些是监控产生的能量、消耗的能量和输出的能量的有效方法。• 您不需要智能电表即可获得 SEAI 补助金。
涉及大脑视觉区域的电刺激会产生被称为光幻视的人造光感知。这些视觉感知在先前涉及皮层内微模拟 (ICMS) 的研究中得到了广泛的研究,并成为开发盲人视觉假体的基础。尽管已经取得了进展,但在实施功能性 ICMS 进行视觉康复方面仍然存在许多挑战。对主枕叶进行经颅磁刺激 (TMS) 提供了一种非侵入性产生光幻视的替代方法。盲人面临的一个主要挑战是导航。在科学界,评估视觉假体辅助导航能力的方法一直被忽视。在本研究中,我们调查了唤起侧向光幻视以在计算机模拟的虚拟环境中导航的有效性。更重要的是,我们展示了虚拟环境和视觉假体的开发如何相互关联,使患者和研究人员都受益。使用两个 TMS 设备,将一对 40 毫米的 8 字形线圈放置在每个枕半球上,从而产生单侧光幻视感知。参与者的任务是使用外围设备根据存在光幻视的视觉半场进行一系列左转和右转。如果参与者能够准确地感知所有十个光幻视,则模拟目标能够前进并完全退出虚拟环境。我们的研究结果表明,参与者可以解释单侧光幻视,同时强调基于计算机的虚拟环境的集成以评估视觉假体在导航过程中的能力。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
基于经验的演变 20 世纪 20 年代,比利·米切尔将军击沉了一艘目标战舰,从而展示了舰艇面对空袭的脆弱性,为海军带来了新的威胁。早期的海军防空依靠 20 毫米、40 毫米、3 英寸和 5 英寸炮等防空炮火进行大规模、不协调的射击。在那些日子里,战场范围只延伸到视距内,通常不到 15 英里。防空由一系列近距离局部防空战组成,严格来说是出于自卫。舰艇依靠目视观测和原始、不精确的声音通信。第二次世界大战期间,精确空中轰炸和鱼雷轰炸的后续发展带来了严重威胁,需要防御能力。在海军舰艇上部署空中搜索雷达极大地改变了防空环境。远程侦察敌人使得舰载战斗机能够在距离目标特遣部队数英里的地方消灭来袭的袭击。早期侦察远距离袭击为防御舰艇提供了关键的反应时间,以便在受到攻击的友军部队之间启动有限的火力协调。当神风特攻队于 1944 年作为第一种真正的制导导弹出现时,早期侦察和预警对于有效的防空至关重要。战术发展迅速,包括紧密聚集的防御舰艇编队和用于预警的警戒舰。虽然以目前的标准来看还很原始,但有效、协调的概念
四十多年来,随着功率金属氧化物硅场效应晶体管 (MOSFET) 结构、技术和电路拓扑的创新与日常生活中对电力日益增长的需求保持同步,电源管理效率和成本稳步提高。然而,在新千年,随着硅功率 MOSFET 渐近其理论界限,改进速度已经放缓。功率 MOSFET 于 1976 年首次出现,作为双极晶体管的替代品。这些多数载流子器件比少数载流子器件速度更快、更坚固,电流增益更高(有关基本半导体物理的讨论,一个很好的参考资料是 [1])。因此,开关电源转换成为商业现实。功率 MOSFET 最早的大批量消费者是早期台式计算机的 AC-DC 开关电源,其次是变速电机驱动器、荧光灯、DC-DC 转换器以及我们日常生活中成千上万的其他应用。最早的功率 MOSFET 之一是国际整流器公司于 1978 年 11 月推出的 IRF100。它拥有 100V 漏源击穿电压和 0.1 Ω 导通电阻 (R DS(on)),堪称当时的标杆。由于芯片尺寸超过 40mm2,标价为 34 美元,这款产品注定不会立即取代备受推崇的双极晶体管。从那时起,几家制造商开发了许多代功率 MOSFET。40 多年来,每年都会设定基准,随后不断超越。截至撰写本文时,100V 基准可以说是由英飞凌的 BSZ096N10LS5 保持的。与 IRF100 MOSFET 的电阻率品质因数 (4 Ω mm 2 ) 相比,BSZ096N10LS5 的品质因数为 0.060 Ω mm 2 。这几乎达到了硅器件的理论极限 [2]。功率 MOSFET 仍有待改进。例如,超结器件和 IGBT 已实现超越简单垂直多数载流子 MOSFET 理论极限的电导率改进。这些创新可能还会持续相当长一段时间,并且肯定能够利用功率 MOSFET 的低成本结构和一批受过良好教育的设计人员的专业知识,这些设计人员经过多年学习,已经学会了从功率转换电路和系统中榨干每一点性能。
