未经版权持有人书面许可,不得以任何形式复制本出版物的任何部分(包括以电子方式复印或存储在任何介质中,无论是否临时或偶然用于本出版物的其他用途),除非根据《1988 年版权、外观设计和专利法》的规定或版权许可机构有限公司(地址:90 Tottenham Court Road, London, England WIT 4LP)颁发的许可条款。申请版权持有人书面许可以复制本出版物的任何部分,应向出版商提出。可以直接向英国牛津的爱思唯尔科技版权部申请许可:电话:(+44) (0) 1865 843830;传真:(+44) (0) 1865 853333;电子邮件:permissions@elsevier.co.uk。您也可以通过 Elsevier Science 主页(http://www.elsevier.com)在线完成您的请求,方法是选择“客户支持”,然后选择“获取许可”。
版权所有 © 国际劳工组织 2007 国际劳工局出版物享有《世界版权公约》第二议定书规定的版权。但是,可以在未经授权的情况下复制其中的简短摘录,但必须注明出处。如需复制或翻译权,请向国际劳工局出版物(权利和许可)提出申请,地址为瑞士日内瓦 22,CH-1211。国际劳工局欢迎此类申请。在英国向版权许可机构注册的图书馆、机构和其他用户,地址为伦敦 W1T 4LP,托特纳姆法院路 90 号 [传真:(+44) (0)20 7631 5500;在美国,可以通过与版权许可中心(地址:222 Rosewood Drive, Danvers, MA 01923)[传真:(+1) (978) 750 4470;电子邮件:info@copyright.com] 或与相关复制权组织联系的其他国家/地区,根据为此目的向他们颁发的许可证进行复印。
Newnes 爱思唯尔出版社 Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington, MA 01803 首次出版于 2003 年 版权所有 2003, IDC Technologies。保留所有权利 未经版权持有人书面许可,不得以任何材料形式复制本出版物的任何部分(包括以电子方式复印或存储在任何介质中,无论是否临时或偶然用于本出版物的其他用途),除非根据《1988 年版权、外观设计和专利法》的规定或根据版权许可机构有限公司颁发的许可条款,地址为 90 Tottenham Court Road, London, England W1T 4LP。如需获得版权持有人的书面许可,复制本出版物的任何部分,请向出版商提出申请。英国图书馆出版数据编目。英国图书馆有本书的目录记录。ISBN 07506 57987。排版和编辑:印度孟买的 Vivek Mehra。在英国印刷和装订。
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。
Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。
