首先研究电路对不同 RF 场的幅度响应(忽略“天线”,假设 EUT 和电缆的设置不变),我们发现模拟电路通常对 RF 场的响应具有解调典型的平方律关系。例如,将场强增加 6dB 通常会导致信号误差增加 12dB。因此,即使场分布发生微小变化,和/或电缆数量及其布局发生微小变化,也会对 EUT 响应造成很大差异。例如,如果 EUT 的模拟功能在其性能标准下比其低 6dB,则它似乎已经通过了测试,并且幅度不错 - 但是在其一条电缆附近场强增加 5dB 可能会导致信号误差增加 10dB,使功能比其性能标准高 4dB。或者,如果电缆或 EUT 的一部分暴露在低 4dB 的场强下,3dB 的失败可能会变成 5dB 的通过。
生物测量通常受到大量非平稳噪声的污染,需要有效的降噪技术。我们提出了一种新的实时深度学习算法,该算法可以自适应地产生与噪声相反的信号,从而发生破坏性干扰。作为概念验证,我们通过使用定制的、灵活的、3D 打印的复合电极降低脑电图中的肌电图噪声来展示该算法的性能。使用此设置,通过消除宽带肌肉噪声,EEG 的信噪比平均提高了 4dB,最高提高了 10dB。这一概念不仅可以自适应地提高 EEG 的信噪比,还可以应用于广泛的生物、工业和消费者应用,例如工业传感或降噪耳机。
通过雾进行成像在诸如自动驾驶汽车,增强驾驶,飞行飞机,直升机,无人机和火车等工具中具有重要的应用。在这里我们表明,从雾反射的光的时间填充具有分布(伽马),该分布与从雾(高斯)遮住的物体所反映的光中不同。这有助于区分背景光子与雾和信号光子从遮挡物体反射的信号光子之间。基于此观察结果,我们恢复了被密集,动态和异质雾阻塞的场景的反射和深度。对于实际用例,成像系统以最小的占地面积为单位的反射模式设计,并基于LiDAR硬件。特别是,我们使用单个光子雪崩二极管(SPAD)摄像机,该摄像头将计入单个检测到的光子。在没有先验知识的情况下,开发了一个概率计算框架,以估计雾化本身的雾性特性。其他解决方案是基于雷达的,该雷达遭受分辨率较差(由于长波长)的障碍,或者按时门控遭受较低的信噪比。建议的技术在雾室中产生的多种雾密度中进行了实验评估。它在可见度为37厘米时演示了离相机57厘米的恢复对象。在这种情况下,它以5厘米的分辨率恢复了深度,并且场景反映了PSNR和3的4DB的反射。4×SSIM的重建质量随时间推移门控技术。4×SSIM的重建质量随时间推移门控技术。
