摘要 - 随着大规模生成的AI模型的开发超出文本(1D)生成,包括图像(2D)和视频(3D)生成,处理空间和时间信息对质量,性能和效率提出了独特的挑战。我们介绍了为理解多模式文本对图像(TTI)和文本对视频(TTV)生成模型的新系统设计空间的第一项工作。当前的模型架构设计分为两类:基于扩散和变压器的模型。我们在八个代表性TTI/TTV模型的套件上进行系统的性能表征表明,应用了最新的优化技术(例如闪光灯注意),卷积占基于扩散的TTI模型的44%的执行时间,而线性层为Transfere基于变速器的模型的执行时间最多49%。我们还观察到,基于扩散的TTI模型类似于LLM推理的预填充阶段,并且受益于闪光灯的1.1-2.5倍比类似于解码阶段的TTI模型高1.1-2.5倍。由于为LLMS设计的优化未直接映射到TTI/TTV模型上,因此我们必须对这些工作负载进行彻底的表征,以获得新的优化机会的见解。在这样做时,我们在TTI/TTV模型的上下文中定义了序列长度,并且在扩散模型推断中观察到序列长度最高为4倍。我们还观察到TTV工作负载的时间方面构成了独特的系统瓶颈,时间注意力占总注意力时间的60%以上。总的来说,我们深入的系统性能表征是设计有效且可部署的系统的重要第一步,以实现新兴的TTI/TTV工作负载。索引项 - 生成AI,多模式,扩散模型,变压器,序列长度,注意力
图表列表 图 1.1:限制性酶的发现时间表及一般历史里程碑……………………………………………………………………………………………………… 2 图 1.2:中心法则图…………………………………………………………………… 4 图 1.3:不同类型的限制性酶;ZFN 和 TALEN 序列特异性分别与特定三联体或有限特定 bp 序列有关。粉红色高亮表示所示限制性酶或内切酶的结合位点。粗线表示切割位点………………………………………………………… 5 图 1.4:CRISPR-Cas9 系统的功能组件(Bortesi, L. 和 Fischer, R.,2014 年)。面板 (a) 显示了 Cas9 正常发挥功能所必需的各个 RNA 组件。图 (b) 显示 RNA 成分连接在一起形成 sgRNA 序列。……………………………………………………………………...… 8 图 3.1:设计引物的 Lambda DNA 凝胶电泳(目标大小 1000bp)。孔 1 显示大小标准(以“M 表示),孔 2 和 3 显示成功 PCR …………………………………………………………………………………..... 20 图 3.2:基于 Origene 的 CRISPR-Cas9 方案的凝胶电泳。含有梯状物的孔标记为“L”。含有未切割的 PCR 产物储备孔标记为“P”。标签 2/3、1X 和 4X 表示反应中使用的 DNA 浓度。标准浓度为 1X。孔 2-4、6-8、10-12、14-16、18 和 19 显示 CRISPR/Cas9 反应产物 .……………………………….…….….… 21 图 3.3:基于 Origene 的改良版 CRISPR-Cas9 方案的凝胶电泳图,其中模板 DNA 浓度和 Cas9 试剂浓度均增加。含有梯度的孔标记为“L”。含有未切割的 PCR 产物原料孔标记为“P”。孔 3-6、7、8、10-13、14 和 15 含有 CRISPR/Cas9 反应产物。所有反应均含有 10uL 模板 DNA .…………………………………………………..……………………..……...…. 22 图 3.4:基于 IDT 的改良版 CRISPR-Cas9 方案的凝胶电泳图。含有梯状物的孔标有“L”。含有未切割的 PCR 原液产物的孔标有“P”。孔 2 不含任何产物。孔 3-6、7-10 和 11-14 含有 CRISPR/Cas9 反应产物。所有反应均含有 tracrRNA。孔 11-14 含有 3 倍量(uL)的模板 DNA……… ...
Accuracy Accuracy includes linearity, hysteresis, repeatability Accuracy: ±0.25% of full scale ±1 least significant digit Sensor hysteresis: ±0.015% FS, included in accuracy Sensor repeatability: ±0.01% FS, included in accuracy Display 3 readings per second nominal display update rate 3-1/2 digit (1999) LCD, 0.5" H digits BL option: LED backlight on whenever gauge is on Controls Front button turns gauge on/off Batteries, Low Battery Indication, Battery Life Two AA alkaline included Low battery indication on display (battery life is approximate) B : 2500 hours BL option: 180 hours Controls B : Front button turns gauge on/off, starts auto shutoff timer BL option: Front button turns gauge on/off, starts auto shutoff timer, backlight is on when gauge is on Auto Shutoff Factory set to 5, 10, 30分钟,或仅用于开/关 - 仅校准前校准电位计,非相互作用的零和跨度,±10%范围内壳DPG1000b:NEMA 2灰色涂层挤出的铝制箱,ABS/ABS/Polycarbonate bezel,前和后垫片,聚碳酸盐,聚碳纤维Ate标签。f4b:NEMA 4X紫外线稳定的ABS/聚碳酸酯盒,聚体式显示窗口,聚碳酸酯前标,后垫片,六个不锈钢盖螺钉。不打算永久室外安装。重量约为9.5盎司的运输重量1磅连接和材料1/4“ npt雄性配件,316升不锈钢所有湿零件的均为316升不锈钢超压,突发,使用3000 psig传感器:5000 psig范围使用5000 psig范围使用5000 PSIG传感器:7500 PSIG:7500 psi psi is psi is psi is psi systry is psi the the the is the the the the the the the the the the the Is Sensor:4真空服务:15 psia,±15 psig,15 psig,30 psia,100 psig,100 psia,200 psig传感器的环境温度储存温度:–40至203°F(–40至95°C)操作:–4至180°F(–20至82°C)传感器范围(–20至82°C)传感器补偿范围:32至158°F(0至158°F)
甜罗勒(Ocimum Basilicum)是一种经济上重要的同二倍二磷脂(2n = 4 x = 48)草药,其全球产量受到质感生物营养性卵菌造成的质状疾病的威胁,peronospora belbahrii。通过CRISPR/CAS9的易感性诱变产生抗病品种,目前是维持偏爱性状的最有前途的策略之一,同时提高疾病抗性。先前的研究已经确定了拟南芥DMR6(抑制霉菌6)是降低霉菌造成的冰淇淋病原体透明质透明质球拟南芥拟南芥所需的S基因。在这项研究中,在流行的甜蜜罗勒品种基因诺植物中鉴定出了DMR6的甜罗勒同源物DMR6,发现存在于基因组中具有高拷贝数,并且在变体中具有多态性。生成了一个或两个靶向OBDMR6变体保守区域的单个指南RNA(SGRNA)的CRISPR/CAS9构建体,并用于通过农业细菌介导的转化来转化Genoveser。56 T0线,并通过使用CRISPR编辑(ICE)软件的干扰来分析OBDMR6片段的Sanger测序色谱图检测到OBDMR6的突变。在靶向位点中包含突变的54条线中,13个indel百分比大于96%,表明OBDMR6几乎完整的敲除(KO)。在从三个独立的T0线中得出的T1分离种群中鉴定出了由ICE确定的几乎完全的OBDMR6 KO的三个代表性转基因游离线。使用扩增子深测序确认突变。与野生型植物相比,对上述T1系的T2种子进行了疾病测定法显示,Sporangia的产生减少了61-68%,通过定量PCR(QPCR)确定的相对病原体生物量减少了69-93%。 这项研究不仅产生了无基因的甜罗勒品种,具有改善的霉菌耐药性,而且还有助于我们对甜质p的分子相互作用的理解。 belbahrii。疾病测定法显示,Sporangia的产生减少了61-68%,通过定量PCR(QPCR)确定的相对病原体生物量减少了69-93%。这项研究不仅产生了无基因的甜罗勒品种,具有改善的霉菌耐药性,而且还有助于我们对甜质p的分子相互作用的理解。belbahrii。
交流电压范围 187 V 至 528 V 额定电网频率 50 Hz / 60 Hz 电源频率范围 44 Hz 至 66 Hz 总谐波失真输出电压 Tbd 额定功率下的功率因数 / 可调位移功率因数 1 / 0 过励至 0 欠励 不平衡负载能力 / 连接线 / 电网配置 100% / 5 (L1、L2、L3、N、接地导体) / Yn 效率最大。效率 / 欧洲效率 98.0% / 97.6% 98.0% / 97.2% 保护装置 电网监控 ● 过热 / 电池深度放电 ● / ● 交流短路电流能力 / 电气隔离 ● / — 所有极敏感的剩余电流监控装置 ● 防护等级(根据 IEC 62109-1)/ 过压类别(根据 IEC 60664-1) I / AC:II 通用数据 尺寸(宽 / 高 / 深) 772 / 837.3 / 443.8 毫米(30.4 / 33 / 17.5 英寸) 重量 104 千克(229 磅) 工作温度范围 −25°C 至 +60°C(−13°F 至 +140°F),从 45°C 开始降容 噪音排放,典型值 69 dB(A) 待机 25 W 拓扑 / 冷却概念 三相 / 有源 防护等级(根据 IEC 60529 / UL 50E) IP65 / NEMA 4X 气候类别(根据 IEC 60721-3-4) 4K4 / 4Z4 /4S2 / 4M3 / 4C2 / 4B2 相对湿度最大允许值(无凝结) 95% 特性/功能/附件 Modbus TCP / Speedwire / Wi-Fi ● / ● / ● LED 显示屏(状态/故障/通信) ● / ● / ● 并网能源管理功能(带有集成系统管理器) 自身消耗优化、峰值负载削减、多用途 Web 用户界面 / Wi-Fi 2) ● / ● 系统监控 由 ennexOS 提供支持的 Sunny Portal LCD 显示屏 ○ 混合控制器功能(集成 Sunny Island X 连接盒) 支持 Sunny Island X ● 黑启动 ● 柴油机关闭模式(频率和电压控制) ● 有功和无功功率控制(光伏和电池) ● SOC(状态充电)平衡 ● 柴油发电机管理 ● 并网能源管理(增加自耗、削峰) ● 与外部交流电源同步(公用电网或发电机) ● 仅适用于并网应用的系统管理器功能 使用 Sunny Island X 作为系统管理器时支持的设备总数 1) 11 使用 SMA Data Manager M 作为系统管理器时支持的设备总数 1) 50 集中调试系统中的所有设备 ● 使用由 ennexOS 提供支持的 Sunny Portal 对 SMA 设备进行远程参数化 ● 附件 Sunny Island X 连接盒(第三方) 有两种尺寸可供选择:适用于 10x SI-X 和 16x SI-X 用于无电池备份的并网应用 600 A (COM-EMETER-A-20) / 200 A (COM-EMETER-B-20) 用于无电池备份的并网应用 Janitza UMG604
12 Habana Gaudi2 深度学习加速器:所有测量均使用 Habana SynapseAI 版本 1.10 和 optimum-habana 版本 1.6 在 HLS2 Gaudi2 服务器上进行,该服务器具有八个 Habana Gaudi2 HL-225H 夹层卡和两个 Intel Xeon Platinum 8380 CPU @ 2.30GHz 和 1TB 系统内存。性能测量于 2023 年 7 月进行。第四代英特尔至强 8480:英特尔第四代至强铂金 8480+ 2 插槽系统,112 核/224 线程,Turbo Boost 开启,超线程开启,内存:16x32GB DDR5 4800MT/s,存储:953.9GB);操作系统:CentOS Stream 8;内核:5.15.0-spr.bkc.pc.16.4.24.x86_64;批次大小:1;在 1 个插槽上测量:1;PyTorch 每日构建 0711;英特尔® PyTorch 扩展标签 v2.1.0.dev+cpu.llm;模型:Llama 2 7B 和 Llama 2 13B;数据集 LAMBADA;令牌长度:32/128/1024/2016(输入)、32(输出);波束宽度 4;精度:BF16 和 INT8;英特尔于 2023 年 7 月 12 日进行测试。英特尔至强 Max 9480:英特尔至强 Max 9480 2 插槽系统,112 核/224 线程,Turbo Boost 开启,超线程开启,内存:16x64GB DDR5 4800MT/s;8x16GB HBM2 3200 MT/s,存储:1.8TB;操作系统:CentOS Stream 8;内核:5.19.0-0812.intel_next.1.x86_64+server;批次大小:1;在 1 个插槽上测量;PyTorch nightly build0711;英特尔® PyTorch 扩展 llm_feature_branch;模型:Llama 2 7B 和 Llama 2 13B,数据集 LAMBADA;令牌长度:32/128/1024/2016(输入)、32(输出);波束宽度 4;精度:BF16 和 INT8;英特尔于 2023 年 7 月 12 日进行测试。英特尔数据中心 GPU Max 系列:1 个节点、2 个英特尔至强铂金 8480+、56 个内核、超线程开启、睿频开启、NUMA 2、总内存 1024GB(16x64GB DDR5 4800 MT/s [4800 MT/s])、BIOS SE5C7411.86B.9525.D19.2303151347、微码 0x2b0001b0、1 个以太网控制器 X710(用于 10GBASE-T)、1 个 1.8T WDC WDS200T2B0B、1 个 931.5G 英特尔 SSDPELKX010T8、Ubuntu 22.04.2 LTS、5.15.0-76-generic、4 个英特尔数据中心 GPU Max 1550(仅使用单个 OAM 的单个 Tile 进行测量) GPU 卡)、IFWI PVC 2_1.23166、agama 驱动程序:agama-ci-devel-627.7、英特尔 oneAPI 基础工具包 2023.1、PyTorch 2.0.1 + 英特尔 PyTorch 扩展 v2.0.110+xpu(dev/LLM 分支)、AMC 固件版本:6.5.0.0、型号:Meta AI Llama 2 7B 和 Llama 2 13B、数据集 LAMBADA;令牌长度:32/128/1024/2016(输入)、32(输出);贪婪搜索;精度 FP16;由英特尔于 2023 年 7 月 7 日测试。
概要愿景作为美国的海洋之州,罗德岛的经济未来是蔚蓝的。拟议的 RI 蓝色经济技术集群(RI BETC)将把 RI 和新英格兰南部建立为以公平和可持续为核心的全球领先的蓝色经济中心。RI BETC 以现有的区域、国家和全球资产为基础,得到行业、政府、慈善机构、非营利组织和学术合作伙伴的支持。RI 的蓝色经济涵盖七个行业:港口和航运、国防、海洋贸易、海洋可再生能源、水产养殖、渔业以及旅游和娱乐。RI BETC 联盟请求总计 7810 万美元的 EDA 资金。联盟已经确定了超过 1497 万美元的私人和州资金、840 万美元的实物支持,以及与康涅狄格州 (CT) 和马萨诸塞州 (MA) 在蓝色经济领域进行区域合作的机会。 RI BETC 目标雄心勃勃,以丹麦、荷兰和葡萄牙的国际蓝色经济基准为基础。也就是说,我们的目标是在未来 10 年内,使罗得岛的地区生产总值 (GRP) 增长率达到全经济基线的 4 倍,使该领域的就业增长率达到 5 至 7 倍。RI BETC 提出了九个组成项目,以催化蓝色经济的巨大增长潜力,使罗得岛和地区内历来在高薪工作和财富积累途径中代表性不足的人群受益。这些组成项目有可能改变罗得岛的蓝色经济,使其规模扩大近一倍,增加多达 54,000 个蓝色经济就业岗位,并预计 10 年内每年的蓝色经济 GRP 将达到 150 至 250 亿美元。此外,罗得岛的蓝色经济增长将在整个新英格兰南部的相关行业创造成倍的就业机会。 RI BETC 对蓝色经济的定义 从历史上看,“蓝色经济”一词并没有普遍接受的定义,通常用于指化石燃料等采掘业以及海运和旅游业。RI BETC 借此独特机会为蓝色经济制定一个 21 世纪的定义;即通过先进技术和可再生能源,以公平的经济发展和环境可持续性为中心。构成 RI BETC 对蓝色经济的定义的七个行业相互关联,RI BETC 可以共同扩大与气候适应努力相一致的经济机会,从而使该行业具有弹性并能应对气候变化的影响。通过将我们的愿景集中在可持续性和公平性上,我们相信我们将改变 RI、新英格兰南部和美国的蓝色经济。
我们的看法:VaTech Wabag 是一家经验丰富的公司,在水技术领域拥有超过 25 年的强大影响力,并通过工程、采购和施工 (EPC) 服务、运营和维护 (O&M) 服务、研发、施工和调试提供定制的水处理解决方案。该公司已实施了 1450 多家工厂,其中包括 450 多家污水处理厂和 320 多家水处理厂。该公司的订单分布在市政和工业项目的各个领域,业务遍布全球各大洲。2024 财年第一季度的订单流入量约为 1,761 千万卢比,使截至 2023 年 12 月的总订单价值达到 11,865.5 千万卢比。最近,Wabag 与 Peak Sustainability Ventures 建立了战略合作伙伴关系,在印度、海湾合作委员会、非洲和欧洲建立了 100 家生物压缩天然气工厂。订单中工业订单占 13%,市政订单占总订单的 87%。Wabag 逐渐增加了其在运营和维护业务部门的份额,目前该部门占其现有订单的 43%,与 EPC 部门相比,该部门的利润率可能会更高。Wabag 继续专注于新兴市场,并已获得 59% 来自国际地区的订单。Wabag 计划将其订单增加到 20,000 亿卢比,并预计 5 年内营收将在 6,000-7,000 亿卢比之间。截至 2023 年 12 月,订单显示 2023 财年收入的 4 倍的强劲可见性。最近,Wabag 从 SEPCO III 电力建设有限公司获得了一笔价值 277 亿卢比的工业订单,用于在沙特阿拉伯王国的 Ras Tanura 炼油厂综合体中设计和采购一个日处理 2000 万升的工业废水处理厂。这项为 Miahona 和沙特阿美执行的订单计划在 20 个月内完成,这再次证明了 Wabag 在石油和天然气领域的技术领导地位,并进一步巩固了其在中东地区的地位。Wabag 正在实施其长期增长“Wriddhi”战略,该战略专注于国际地区。鉴于其健康的订单、强大的执行能力、强劲的订单渠道、稳定的 EBITDA 利润率以及对政府支出的积极预期,我们对该股保持乐观。我们已于 2023 年 3 月 20 日发布了关于 VA Tech Wabag 的初始报道报告(链接);这两个目标都在我们的时间范围内实现了。鉴于订单量强劲、执行量增加和资产负债表健康,我们正在发布股票更新报告。
○ 与 A100 相比,新的第四代 Tensor Cores 的芯片间速度提高了 6 倍,包括每个 SM 的加速、额外的 SM 数量和 H100 的更高时钟频率。在每个 SM 的基础上,与上一代 16 位浮点选项相比,Tensor Cores 在等效数据类型上提供 2 倍的 A100 SM MMA(矩阵乘法累加)计算速率,使用新的 FP8 数据类型提供 4 倍的 A100 速率。Sparsity 功能利用深度学习网络中的细粒度结构化稀疏性,使标准 Tensor Core 操作的性能翻倍。○ 新的 DPX 指令使动态规划算法比 A100 GPU 加速高达 7 倍。两个示例包括用于基因组学处理的 Smith-Waterman 算法和用于在动态仓库环境中为机器人车队寻找最佳路线的 Floyd-Warshall 算法。○ 与 A100 相比,IEEE FP64 和 FP32 芯片间处理速度提高了 3 倍,这是由于每个 SM 的时钟对时钟性能提高了 2 倍,再加上 H100 的额外 SM 数量和更高的时钟。○ 新的线程块群集功能允许以大于单个 SM 上单个线程块的粒度对局部性进行编程控制。这通过在编程层次结构中添加另一个级别来扩展 CUDA 编程模型,现在包括线程、线程块、线程块群集和网格。集群支持跨多个 SM 同时运行的多个线程块同步并协作获取和交换数据。○ 新的异步执行功能包括一个新的张量内存加速器 (TMA) 单元,它可以在全局内存和共享内存之间非常高效地传输大块数据。TMA 还支持集群中线程块之间的异步复制。还有一个新的异步事务屏障,用于执行原子数据移动和同步。● 新的 Transformer Engine 结合使用软件和定制的 Hopper Tensor Core 技术,专门用于加速 Transformer 模型训练和推理。Transformer Engine 可智能管理并动态选择 FP8 和 16 位计算,自动处理每层 FP8 和 16 位之间的重新转换和缩放,与上一代 A100 相比,在大型语言模型上提供高达 9 倍的 AI 训练速度和高达 30 倍的 AI 推理速度。● HBM3 内存子系统提供的带宽比上一代增加了近 2 倍。H100 SXM5 GPU 是世界上第一款配备 HBM3 内存的 GPU,可提供一流的 3 TB/秒内存带宽。● 50 MB L2 缓存架构可缓存大量模型和数据集以供重复访问,从而减少 HBM3 的访问次数。● 第二代多实例 GPU (MIG) 技术为每个 GPU 实例提供大约 3 倍的计算能力和近 2 倍的内存带宽
○ 与 A100 相比,新的第四代 Tensor Cores 芯片间速度提高了 6 倍,包括每个 SM 的加速、额外的 SM 数量和 H100 的更高时钟频率。与上一代 16 位浮点选项相比,在每个 SM 上,Tensor Cores 在等效数据类型上提供 A100 SM 的 2 倍 MMA(矩阵乘法累加)计算速率,在使用新的 FP8 数据类型时提供 A100 的 4 倍速率。稀疏性功能利用深度学习网络中的细粒度结构化稀疏性,使标准 Tensor Core 操作的性能翻倍。○ 新的 DPX 指令使动态规划算法比 A100 GPU 快 7 倍。两个例子包括用于基因组学处理的 Smith-Waterman 算法和用于在动态仓库环境中为机器人车队寻找最佳路线的 Floyd-Warshall 算法。 ○ 与 A100 相比,由于每个 SM 的时钟性能提高了 2 倍,再加上 H100 的额外 SM 数量和更高的时钟频率,因此芯片到芯片的 IEEE FP64 和 FP32 处理速度提高了 3 倍。○ 新的线程块群集功能允许以大于单个 SM 上单个线程块的粒度对局部性进行编程控制。这通过在编程层次结构中添加另一个级别来扩展 CUDA 编程模型,现在包括线程、线程块、线程块群集和网格。群集支持跨多个 SM 同时运行的多个线程块以同步并协作获取和交换数据。○ 新的异步执行功能包括一个新的张量内存加速器 (TMA) 单元,它可以在全局内存和共享内存之间非常高效地传输大块数据。TMA 还支持群集中线程块之间的异步复制。还有一个新的异步事务屏障,用于执行原子数据移动和同步。 ● 新型 Transformer Engine 结合使用软件和定制的 Hopper Tensor Core 技术,专门用于加速 Transformer 模型的训练和推理。Transformer Engine 可以智能地管理和动态地选择 FP8 和 16 位计算,自动处理每层 FP8 和 16 位之间的重新转换和缩放,与上一代 A100 相比,在大型语言模型上提供高达 9 倍的 AI 训练速度和高达 30 倍的 AI 推理速度。● HBM3 内存子系统提供的带宽比上一代增加了近 2 倍。H100 SXM5 GPU 是世界上第一款配备 HBM3 内存的 GPU,可提供一流的 3 TB/秒内存带宽。● 50 MB L2 缓存架构可缓存大量模型和数据集以供重复访问,从而减少对 HBM3 的访问。● 第二代多实例 GPU (MIG) 技术为每个 GPU 实例提供大约 3 倍的计算能力和近 2 倍的内存带宽
