通过构建由基因组DNA和DNA对照组成的Nebnext®EM-SEQ库(CPG甲基化的PUC19和未甲基化的Lambda),通过构建Nebnext®EM-SEQ库进行了功能测试,并与前面的批次进行了测试。NEBNEXT®EM-SEQ KIT的最小值和最大DNA输入要求用于制作在同一Illumina®流动池上测序的库。库评估基于指标,包括库产量,库大小,GC偏置,插入大小以及在基因组DNA和内部对照中检测到的CpG,CHG,CHH环境的5MC/5HMC百分比。
多能视网膜祖细胞的视网膜细胞命运决定受染色质结构和基因表达的动态变化控制。DNA 胞嘧啶甲基化 (5mC) 受到积极调控,以正确控制基因表达和染色质结构。许多基因在视网膜发育过程中表现出活性 DNA 去甲基化;这个过程需要将 5mC 氧化为 5-羟甲基胞嘧啶 (5hmC),并由十-十一易位甲基胞嘧啶双加氧酶 (TET) 酶控制。使用一系列等位基因条件性 TET 酶突变体,我们确定 DNA 去甲基化是 NRL 和 NR2E3 表达上游所必需的,以建立视杆细胞命运。使用组织学、行为学、转录组学和碱基对分辨率 DNA 甲基化分析,我们确定抑制活性 DNA 去甲基化会导致整体变化
福尔马林固定石蜡包埋组织 (FFPE) 中的基因组 DNA 是基因组研究的常见来源,但由于固定损伤、碎片化和提取 DNA 的产量低,文库制备和测序具有挑战性。面对需要评估全基因组体细胞变异调用、正常边缘变异调用和甲基化状态的研究设计,输入的 FFPE DNA 数量和质量变得有限。用于生成全基因组测序和甲基化数据的既定方法(长读测序或标准短读 + 甲基化测序或阵列)需要高输入 DNA 数量和质量。生物模态 evoC 文库制备方法提供了一种替代化学方法,可实现标准全基因组测序,对 DNA 的输入要求低(<80ng),同时提供 5mC(和 5hmC 选项)调用。
O- GlcNAC转移酶OGT与所有三种哺乳动物TET甲基二偶联酶都与所有三种哺乳动物Tet甲基二加氧酶进行牢固相互作用。我们20在这里表明,小鼠胚胎干细胞中的OGT基因(MESC)的缺失导致21种tet产物5-羟基甲基胞嘧啶(5HMC)在构体和杂色和异杂体中均具有22个同时降低Tet suisptrate 5-mettrate sistratrate 5-ettratrate contratation(5-hmc)。MESC设计了23,以消除TET1-OGT相互作用,同样显示出全基因组的降低5MC。DNA在24个OGT缺陷型细胞中的甲基化伴随着可转移元件(TES)的抑制,主要位于25个异染色质中,TE表达的这种增加有时会伴随着增加的26个基因和外显子的CIS表达增加。因此,TET-OGT相互作用通过限制跨TET活性基因组来阻止异染色质中DNA脱甲基化和27 TE表达。我们建议OGT保护28个基因组免受DNA降压降低和异染色质完整性的损害,从而防止在癌症,自身免疫性疾病,细胞衰老和衰老中观察到的TE 29表达的异常增加。30
哺乳动物细胞基因组中DNA甲基化的形成,遗传和去除是由两个酶 - DNA甲基转移酶(DNMTS)和十个时期转运蛋白(TETS)的两个家族的调节。dnmts生成并维持5-甲基胞嘧啶(5MC)的遗传,这是由TET酶靶向的底物,用于转化为5-羟基甲基胞嘧啶(5HMC)及其下游氧化衍生物。DNMT和TET的活性取决于微量营养素和代谢产物副因素的可用性,包括必需的植物,氨基酸和微量金属,突出显示如何通过代谢和营养扰动如何直接增强,抑制或重塑DNA甲基化水平。在胚胎发育,谱系规范和维持体细胞功能的过程中需要动态变化,可以根据必需微量营养素的影响来进行细胞功能。随着年龄的增长,DNA甲基化和羟甲基水平在图案上漂移,导致表观遗传失调和基因组不稳定,这是多种疾病在内的多种疾病的形成和进展。了解如何通过微量营养素调节DNA甲基化将对维持衰老时正常组织功能的维持以及预防和治疗疾病以改善健康和寿命具有重要意义。
已经确定了100多种自然发生的RNA修饰,其中一些在基因表达调节中起了各种作用。[1-3]作为真核mRNA中最丰富的内部修饰,n 6-甲基拉丹代氨酸(M 6 A)受动态调节,并参与了mRNA代谢的许多方面,例如替代拼接,[4]核输出,[5]稳定性,[5]稳定性,[6] [6]转换[7,8]和dean。[9]近年来,关于其他mRNA修饰的整个转录组测序的研究也已经出现。报告的排序方法可以分组为:(1)基于抗体的M 6 A 4,M 1 A,[10-13] AC 4 C 14,15,M 5 C 16和HM 5 C 17。这些方法依赖于基于抗体的富集,但既不能达到碱基精度也无法揭示绝对修饰的部分。(2)逆转录(RT)基于停止的方法,例如基于CMC的假喹啉测序[18]和基于低DNTP的2'-O-O-ME测序。[19]尽管这些方法可以以基础分辨率检测修饰位点,但它们通常具有很高的假阳性速率,因为RT停止签名可能是非特定于特定特定的。[20](3)基于RT突变的AP促进,例如映射M 6 A,[21-24] M 7 G [25-27]和M 1 A [28]的方法,这些方法在修改的位点产生突变特征以实现单个基础分辨率,以低背景。(4)基于RT缺失的方法,例如BS诱导的定量假氨酸测序。[29,30] RNA修饰中的另一个考虑是每个位点的修饰化学计量法。修饰分数是与修饰动力学及其调节功能直接相关的生物学参数。5-甲基胞嘧啶(5MC),5-羟基甲基环胞嘧啶(5HMC)和5-甲基辛糖苷(5FC)是DNA中重要的中间体的DNA修饰,是活性DNA 5MC
血浆游离 DNA 中的 5-羟甲基胞嘧啶测序可识别对雄激素剥夺疗法有耐药性的前列腺癌患者的独特表观基因组特征 李千霞 1,2,* 、黄江青 3,* 、黄沙恩 4 、田一军 1 、黄金勇 1 、Amirreza Bitaraf 1 、董晓伟 3 、Marja T. Nevalanen 5 、Manishkumar Patel 1 、Jodie Wong 1 、张劲松 6 、Brandon J. Manley 6 、Jong Y. Park 7 、Manish Kohli 8 、Elizabeth M. Gore 9 、Deepak Kilari 10,+ 、王亮 1,+ 1. 美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究中心肿瘤微环境及转移系 2. 华中科技大学同济医院肿瘤科武汉科技大学 3. 美国威斯康星州密尔沃基威斯康星大学 Joseph J. Zilber 公共卫生学院生物统计学系 4. 美国威斯康星州麦迪逊威斯康星大学生物统计学系 5. 美国费城托马斯杰斐逊大学 Sidney Kimmel 癌症中心药理学、生理学和癌症生物学系 6. 美国佛罗里达州坦帕 H. Lee Moffitt 癌症中心和研究所泌尿生殖肿瘤学系 7. 美国佛罗里达州坦帕 H. Lee Moffitt 癌症中心和研究所癌症流行病学系 8. 美国犹他州盐湖城犹他大学亨茨曼癌症中心内科系肿瘤学分部 9. 美国威斯康星州密尔沃基威斯康星医学院放射肿瘤学系 10. 美国威斯康星州密尔沃基威斯康星医学院肿瘤学分部 * 同等贡献(QL 和 CC.H.) + 通讯作者 Liang Wang,医学博士,哲学博士 肿瘤微环境和转移系 莫菲特癌症中心 12902 USF Magnolia Drive Tampa, FL 33612, USA 电子邮件:liang.wang@moffitt.org Deepak Kilari,医学博士 威斯康星医学院肿瘤学系 9200 W. Wisconsin Ave Milwaukee, WI 53226, USA 电子邮件:dkilari@mcw.edu 标题:cfDNA 中的 5hmC 特征可预测对 ADT 的早期耐药性
