Wataru Akahata,博士 VLP Therapeutics,Inc. 704 Quince Orchard Rd. #110,Gaithersburg,MD 20878 电话:(240) 801-4456 电子邮件:wakahata@vlptherapeutics.com Hisashi Akiyama,博士 病毒学、免疫学和微生物学系 波士顿大学 Chobanian & Avedisian 医学院 650 Albany Street,X343B Boston,MA 02118 电话:(617) 358-1778 传真:(617) 638-4286 电子邮件:hakiyama@bu.edu
在哺乳动物中,5-甲基胞嘧啶 (5mC) 和多梳抑制复合物 2 (PRC2) 沉积的组蛋白 3 赖氨酸 27 三甲基化 (H3K27me3) 在富含 CpG 的区域通常是互斥的。当小鼠胚胎干细胞退出幼稚多能状态时,5mC 大量增加,同时 H3K27me3 被限制在无 5mC 的富含 CpG 的区域。为了正式评估 5mC 如何塑造 H3K27me3 景观,我们在存在和不存在 DNA 甲基化机制的情况下分析了幼稚细胞和分化细胞的表观基因组。令人惊讶的是,我们发现 5mC 积累并不是限制大多数 H3K27me3 域所必需的。相反,这种不依赖 5mC 的 H3K27me3 限制是由 PRC2 拮抗剂 Ezhip(编码 EZH 抑制蛋白)的异常表达介导的。在 5mC 似乎真正取代 H3K27me3 的区域子集中,我们确定了 163 个候选基因,这些基因似乎需要 5mC 沉积和/或 H3K27me3 耗竭才能在分化细胞中激活。使用定点表观基因组编辑直接调节 5mC 水平,我们证明 5mC 沉积足以拮抗 H3K27me3 沉积并赋予单个候选基因基因激活。总之,我们系统地测量了重现早期胚胎动力学的系统中 5mC 和 H3K27me3 之间的拮抗相互作用。我们的结果表明 H3K27me3 抑制直接和间接地依赖于 5mC。我们的研究还表明 5mC 在基因激活中发挥着非规范作用,这不仅对正常发育很重要,而且对癌症进展也很重要,因为致癌细胞经常表现出 5mC 与 H3K27me3 的动态替换,反之亦然。
5-甲基胞嘧啶 (5mC) 是一种广泛存在的沉默机制,可控制基因组寄生虫。在真核生物中,5mC 在寄生虫控制之外的基因调控中发挥着复杂的作用,但 5mC 也在许多谱系中丢失了。5mC 保留的原因及其基因组后果仍不太清楚。在这里,我们表明与动物密切相关的原生生物阿帕拉契变形虫具有转座子和基因体甲基化,这种模式让人联想到无脊椎动物和植物。出乎意料的是,变形虫中高甲基化的基因组区域源自病毒插入,包括数百种内源化巨型病毒,占蛋白质组的 14%。使用抑制剂和基因组分析的组合,我们证明 5mC 可以抑制这些巨型病毒插入。此外,替代的变形虫分离株显示出多态性巨型病毒插入,突显了感染、内源化和清除的动态过程。我们的结果表明,5mC 对于新获得的病毒 DNA 与真核生物基因组的受控共存至关重要,这使得变形虫成为了解真核生物 DNA 混合起源的独特模型。
5-甲基胞霉素(5MC)是控制基因组寄生虫的广泛的沉默机制。在真核生物中,5MC在寄生虫控制以外的基因调节中发挥了复杂的作用,但在许多谱系中也丢失了5MC。保留5MC的原因及其基因组后果仍然很少理解。在这里,我们表明,与动物的动物Appalachense密切相关的原生物具有转座子和基因体甲基化,这是一种让人联想到无脊椎动物和植物的模式。出乎意料的是,源自病毒插入的变性菌中的高甲基化基因组区域,包括数百种内生巨大病毒,占蛋白质组的14%。使用抑制剂和基因组测定的组合,我们证明5MC使这些巨大病毒插入沉默。此外,替代性变性分离株显示了多态性巨型病毒插入,高光照明动态感染过程,内生源化和净化过程。我们的结果表明,5MC对于新获得的病毒DNA在真核基因组中的控制性至关重要,使变形虫成为了解真核DNA的杂种起源的独特模型。
DNA甲基化[5-甲基环胞嘧啶(5MC)]是脊椎动物胚胎创世纪所需的抑制性基因调节标记。基因组5MC通过DNA甲基转移酶的作用严格调节,DNA甲基转移酶沉积了5MC和十个时期的易位(TET)酶,该酶通过形成5-羟基甲基霉素(5HMC)而参与其主动去除。TET酶对于哺乳动物的胃胃和椎间发育增强剂的激活至关重要。但是,迄今为止,缺乏对5HMC功能,丰度和基因组分布的清晰图像。通过使用基础分辨率5MC和5HMC定量,在海胆和叶片胚胎发生过程中,我们阐明了非脊椎动物5HMC和TET酶的作用。我们发现,这些无脊椎动物氘代表使用TET酶来靶向与发育基因相关的调节区域的脱甲基化,并表明鉴定出5HMC调节的基因的补充是对脊椎动物的保守的。这项工作表明,从调节区域中删除5MC是氘代表胚胎发生的共同特征,暗示了对主要基因调节模块的意外深层保护。
在哺乳动物中,DNA甲基化是指在DNA-甲基转移酶(DNMT)的作用下用S-腺苷甲基氨酸(SAM)供应甲基,将其甲基转移到甲基环胞嘧啶环的第5个碳原子中,形成甲基化的甲基化脱氧糖苷(5MC)(5MC)(5MC)(5MC)。5MC通常出现在CpG的胞嘧啶上,CpG位点可以占哺乳动物基因组的5–10%。CpG的甲基化状态与基因表达密切相关,DNA甲基化可以抑制辅助基因的活性,而脱甲基化可以诱导基因重新表达。表型差异并不能完全解释遗传差异,研究表明,DNA甲基化可以解释表型差异,例如双胞胎,克隆动物的表型差异(6-8)。DNA甲基化主要通过调节与脂肪细胞分化,转录辅助因子和与脂肪代谢相关的转录因子的表达来调节脂肪组织的生长和发育(9)。张张已经表明,基因启动子区域的甲基化可能抑制与脂肪代谢相关的基因的表达,从而影响脂质液滴结构和脂肪沉积(10)。
DNA甲基化(DNAME)是一种表观遗传标记,其中包括CPG岛中胞质的修饰(5MC)。除了调节基因表达,烙印和沉默的寄生DNA元素的表征良好的作用外,DNAME的不正调还与多种疾病有关。有证据表明,dname不是独立的表观遗传标记,而是与组蛋白的翻译后修饰(PTM)密切相关。但是,检查5MC和PTM之间的直接关系受到无法建立直接机械链接的单独测定的相关分析。此外,测量5MC的传统方法依赖于DNA的苛刻的Bisulfite化学对话,DNA引入了DNA断裂和全身偏见。为了解决这些局限性,我们开发了一种靶向的酶甲基化测序(TEM-SEQ)方法,这是一种超敏感的多摩变基因组映射技术,可在表位定义的染色质特征下提供高分辨率的DNAME谱。重要的是,该测定法可以检查5MC与组蛋白PTM和/或染色质蛋白(CHAPS)之间的直接分子联系。
摘要 挖掘噬菌体中的新酶活性对于开发新的生物技术工具仍然很重要。在本研究中,我们使用 MetaGPA(一种将宏基因组数据中的基因型与表型联系起来的方法)来识别脱氧胞苷脱氨酶,这是一种与宏病毒组中的胞嘧啶修饰高度相关的蛋白质家族。出乎意料的是,这些脱氨酶的一个子集在单核苷酸和单链 DNA 底物中都表现出对 5-甲基胞嘧啶 (5mC) 的偏好,而不是胞嘧啶 (C)。在甲基化组测序工作流程中,这些酶优先脱氨 5mC,这使得甲基化胞嘧啶能够直接转化,同时完全消除任何未修饰胞嘧啶的背景脱氨。这种直接转换允许以单碱基分辨率精确识别甲基化位点,具有无与伦比的灵敏度,为基因组和甲基化组的同时测序提供了广泛的应用。
胰腺神经内分泌肿瘤 (PNET) 是第二大最常见的胰腺肿瘤。然而,除了涉及多发性内分泌肿瘤 1 (MEN1)、ATRX 染色质重塑基因和死亡结构域相关蛋白基因的突变(约 40% 的散发性 PNET 中存在这些基因突变)之外,人们对其致瘤驱动因素知之甚少。PNET 的突变负担较低,因此表明其他因素可能促使其发展,包括表观遗传调节因子。DNA 甲基化是一种这样的表观遗传过程,它通过 5'甲基胞嘧啶 (5mC) 沉默基因转录,这通常由基因启动子周围富含 CpG 区域的 DNA 甲基转移酶促进。然而,5'羟甲基胞嘧啶是胞嘧啶去甲基化过程中的第一个表观遗传标记,与 5mC 的功能相反,与基因转录有关,尽管其重要性尚不清楚,因为当仅使用常规亚硫酸氢盐转化技术时,它与 5mC 难以区分。基于阵列的技术的进步促进了 PNET 甲基化组的研究,并使 PNET 能够通过甲基化组特征进行聚类,这有助于预测和发现导致肿瘤发生的新的异常调控基因。本综述将讨论 DNA 甲基化的生物学、其在 PNET 发展中的作用以及对预测和发现表观基因组靶向疗法的影响。
胰腺神经内分泌肿瘤(PNET)是第二常见的胰腺肿瘤。然而,除了涉及多个内分泌肿瘤1(MEN1),ATRX染色质重塑剂和死亡结构域相关蛋白基因的突变之外,对它们的肿瘤驱动因素的了解鲜为人知,这些突变在约40%的散发性PNET中发现。PNET的突变负担低,因此表明其他因素可能有助于其发展,包括表观遗传调节剂。这样的表观遗传过程,DNA甲基化,通过5'methylcytosine(5MC)的沉默基因转录,这通常是由基因启动子周围富含CPG的富含CPG的DNA甲基转移酶促进的。然而,5'Hydroxym甲基胞嘧啶是胞质脱甲基化过程中的第一个表观遗传标记,并且反对5MC的功能与基因转录相关,尽管其意义尚不清楚,因为它与常规的Bisulfite转换技术相关,因为它与5MC没有区别。基于阵列的技术的进步促进了PNET甲基甲基组的研究,并使PNETs通过甲基化体特征聚集,这有助于预后和发现新的异常调节基因,这些基因有助于肿瘤。本综述将讨论DNA甲基化的生物学,其在PNET发育中的作用以及对表观基因组靶向疗法的预后和发现的影响。
