许多疾病,包括心血管疾病、肿瘤和中枢神经系统疾病,都与氧化应激和活性氧 (ROS) 对基因组 DNA 的改变有关。5-甲基胞嘧啶 (5mC) 是细胞 DNA 中一种罕见但正常的成分(图 1A)[12–14]。它通常出现在二核苷酸序列 CpG 中,但情况并非总是如此。这种修饰仅发生在 3' 碳通过磷酸二酯键与鸟嘌呤 (CpG 二核苷酸) 5' 碳原子相连的胞嘧啶中。大多数 CpG 二核苷酸聚集在称为 CpG 岛的小段 DNA 中,正常细胞通过尚不清楚的机制保护这些 CpG 岛免于甲基化。CpG 岛位于启动子区,该区缺乏甲基化对于开启基因至关重要。然而,约...基因组其他位置的CpG双核苷酸有70%被甲基化,转录基因编码区内发现的CpG序列很少[14–17]。
O- GlcNAC转移酶OGT与所有三种哺乳动物TET甲基二偶联酶都与所有三种哺乳动物Tet甲基二加氧酶进行牢固相互作用。我们20在这里表明,小鼠胚胎干细胞中的OGT基因(MESC)的缺失导致21种tet产物5-羟基甲基胞嘧啶(5HMC)在构体和杂色和异杂体中均具有22个同时降低Tet suisptrate 5-mettrate sistratrate 5-ettratrate contratation(5-hmc)。MESC设计了23,以消除TET1-OGT相互作用,同样显示出全基因组的降低5MC。DNA在24个OGT缺陷型细胞中的甲基化伴随着可转移元件(TES)的抑制,主要位于25个异染色质中,TE表达的这种增加有时会伴随着增加的26个基因和外显子的CIS表达增加。因此,TET-OGT相互作用通过限制跨TET活性基因组来阻止异染色质中DNA脱甲基化和27 TE表达。我们建议OGT保护28个基因组免受DNA降压降低和异染色质完整性的损害,从而防止在癌症,自身免疫性疾病,细胞衰老和衰老中观察到的TE 29表达的异常增加。30
摘要 十-十一易位 (TET) 家族酶对 DNA 的氧化对于表观遗传重编程至关重要。5-甲基胞嘧啶 (5mC) 转化为 5-羟甲基胞嘧啶 (5hmC) 会通过包括染色质结构变化在内的机制启动发育和细胞类型特异性转录程序。在这里,我们表明转录基因中 5hmC 的存在会促进新生 RNA 与模板 DNA 链的退火,从而形成 R 环。在没有基因表达变化的情况下,TET 酶的消耗会减少整体 R 环,而 CRISPR 介导的 TET 与活性基因的结合会促进 R 环的形成。5hmC 和 R 环的全基因组分布在小鼠和人类干细胞中呈正相关,并且在一半的活性基因中重叠。此外,R 环分解会导致参与干细胞增殖过程中关键事件的一组基因的差异表达。总之,我们的数据表明,通过 TET 活性进行的表观遗传重编程促进了共转录 R 环的形成,揭示了基因表达调控的新机制。
哺乳动物细胞基因组中DNA甲基化的形成,遗传和去除是由两个酶 - DNA甲基转移酶(DNMTS)和十个时期转运蛋白(TETS)的两个家族的调节。dnmts生成并维持5-甲基胞嘧啶(5MC)的遗传,这是由TET酶靶向的底物,用于转化为5-羟基甲基胞嘧啶(5HMC)及其下游氧化衍生物。DNMT和TET的活性取决于微量营养素和代谢产物副因素的可用性,包括必需的植物,氨基酸和微量金属,突出显示如何通过代谢和营养扰动如何直接增强,抑制或重塑DNA甲基化水平。在胚胎发育,谱系规范和维持体细胞功能的过程中需要动态变化,可以根据必需微量营养素的影响来进行细胞功能。随着年龄的增长,DNA甲基化和羟甲基水平在图案上漂移,导致表观遗传失调和基因组不稳定,这是多种疾病在内的多种疾病的形成和进展。了解如何通过微量营养素调节DNA甲基化将对维持衰老时正常组织功能的维持以及预防和治疗疾病以改善健康和寿命具有重要意义。
摘要:DNA 甲基化与染色质状态和细胞类型特异性基因表达的调节密切相关。印记控制区 (ICR) 上的等位基因特异性 DNA 甲基化调控母源或父源等位基因的印记基因的独家表达。H19/IGF2 印记位点 ICR1 处的异常 DNA 高甲基化或低甲基化分别是印记障碍 Beckwith-Wiedemann 综合征 (BWS) 和 Silver-Russell 综合征 (SRS) 的特征。在本文中,我们使用 dCas9-SunTag 和 TET1 催化域进行表观基因组编辑,以诱导 HEK293 细胞中 ICR1 处的靶向 DNA 去甲基化。靶位点的 5-甲基胞嘧啶 (5mC) 水平降低高达 90%,瞬时转染 27 天后,仍观察到 >60% 的去甲基化。与 ICR1 内 CTCF 结合位点的稳定去甲基化一致,DNA 甲基化敏感绝缘体 CTCF 蛋白的占有率在 27 天内增加了 2 倍以上。此外,H19 表达稳定增加了 2 倍,而 IGF2 受到抑制,尽管只是暂时的。我们的数据表明,表观基因组编辑能够在一次短暂治疗后实现印迹控制区域 DNA 甲基化的长期变化,这可能为治疗性表观基因组编辑方法在治疗印迹障碍方面铺平了道路。
收到2022年12月4日; 2023年8月3日接受;出版于2023年8月17日作者隶属关系:1分子环境微生物学实验室,韩国首尔韩国环境科学与生态工程系,韩国共和国。*信件:Woojun Park,WPARK@韩国。AC。KR关键词:抗生素耐药性;生物膜; DNA甲基化;外排泵;表观遗传学;甲基转移酶。缩写:AR,抗生素耐药性; Azi,阿奇霉素; CCCP,羰基氰化物3-氯苯基氢气; Col,Colistin; Ery,红霉素; Etbr,溴化乙锭; Gen,庆大霉素; IPD,脉间持续时间; Kan,Kanamycin; 6mA,n -6-甲基丹宁; 4MC,n -4-甲基环肽; 5MC,5-甲基胞嘧啶; MEM,MeropeNem; MIC,最小抑制浓度; MTase,甲基转移酶;小睡,核苷相关蛋白;也不,诺福路吗? OMV,外膜外囊泡; PMB,多粘蛋白B; rif,利福平; RM,限制修改; SEM,扫描电子显微镜; SMRT-SEQ,单分子实时测序; TF,转录因子; TMP,甲氧苄啶。†这些作者对此工作数据声明也同样贡献:本文或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用三个补充数据和六个补充表。001093©2023作者
10-11转倾性(TET)酶通过连续氧化5-甲基胞嘧啶(5MC)对衍生物的连续氧化有助于调节甲基,这些酶在缺乏细胞分裂的情况下可以通过基础外观修复(BER)机制积极去除。这在有丝质神经元中尤其重要,因为DNA甲基化的变化与神经功能的变化相关。tet3,具体来说,是发育中神经元分化的关键调节剂,并介导了与认知功能相关的成年神经元的甲基甲基组的动态变化。虽然将DNA甲基化理解为调节转录,但对神经元中TET3依赖性催化活性的特定靶标几乎一无所知。我们报告了神经胚瘤衍生细胞系的无偏转录组分析的结果; Neuro2a,其中TET3被沉默。氧化磷酸化(OXPHOS)被确定为最显着下调的功能典型途径,并且通过测量海马生物能源分析仪的氧消耗率来证实这些发现。通过TET3-SiLencing降低了核和线粒体编码的OXPHOS基因的mRNA水平,但我们没有发现这些基因基因座的差异(羟基)甲基化沉积的证据。然而,在没有TET3的情况下,已知与线粒体质量控制相关的基因的mRNA表现也显着下调。这些基因之一;内生被认为是其基因体内非CPG甲基化位点TET3催化活性的直接靶标。因此,我们提出,异常的线粒体稳态可能有助于Oxphos的降低,而神经2a细胞中TET3降低了调节。
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
2MC 工程广播推进装置工程机械空间仅限 3MC 飞行员/部队广播通常是机库甲板 4MC 损害控制双向紧急报告广播 SA-718/WIC 开关盒 5MC 飞行甲板广播 AN/SIA-118、AM-2316/SIA 6MC 船间广播(呼叫)扬声器,IC/SDE 型 7MC 一般广播双向控制或机动广播 8MC 9MC 10MC 11MC 炮塔控制双向 12MC 安全空间通信;炮塔 LS-518D,AM-3729/SR(I) 13MC 炮塔控制 2 路 14MC 15MC 16MC 17MC 防空/二次炮台控制对讲机和齐射/停火警报 18MC 桥梁广播 2 路 LS-518D;舰桥-驾驶室 19MC 航空控制 双向(待命室) 20MC CIC 双向 21MC 船长指挥 双向 船长指挥 双向 舰桥及其他站 22MC 无线电室/电子控制 双向 23MC 电力发电和配电 双向 使用 26MC(若不存在) 24MC 旗帜指挥 双向 25MC 26MC 机械(工程事故) 双向 机械空间和舰桥 27MC 声纳和雷达控制 双向 声纳监控器 28MC 29MC 声纳控制和信息广播 AN/SIA-120 30MC 特殊武器控制 双向 31MC 逃生舱口广播 LS-450()/B 耐压扬声器 32MC 武器控制 双向 武器控制 防空、ASROC、火炮指挥仪、CIC 等 33MC 34MC 35MC 发射器机长播报 36MC 37MC 38MC 39MC 货物控制 双向 货物控制/站、直升机控制、PH 40MC 旗帜行政 双向 42MC CIC 协调 双向 CIC 站 44MC 仪器空间 双向 卫星系统操作 45MC 研究或任务操作 双向 实验室、科学办公室、气象局等 46MC 航空武器 双向 AN/SIA-122、LS-558/U 防爆 47MC 鱼雷控制 50MC 综合作战情报中心 IC IOIC 站、情报、照片、EDP 等 51MC 飞机维护和处理控制 IC 51MC1(维护)、51MC2(处理) 51MC1 航空维护 51MC2 飞机处理 52MC 53MC 船舶行政 双向 CO、XO和选定的办公室 54MC 修理人员控制 2 路 修理人员和修理车间 75MC 净化站 2 路 LS-474/U、LS-306;净化通道
