(1)超出绝对最大评级下列出的压力可能会对设备造成永久损害。这些仅是应力等级,并且不暗示设备在这些或其他条件以外的其他条件下的功能操作。长期暴露于绝对最大评级条件可能会影响设备的可靠性。(2)输入引脚将二极管夹在功率供应导轨上。当前的极限输入信号可以在供应轨道上摆动超过0.5 V至10 mA或更少。(3)地面短路,每个包装一个放大器。
(1)根据应用程序的特定设备隔离标准应用蠕变和间隙要求。注意保持木板设计的爬路和间隙距离,以确保在印刷电路板上的隔离器的安装垫不会降低此距离。印刷电路板上的蠕变和清除相等。诸如插入凹槽,肋骨或两者都在印刷电路板上的技术用于帮助增加这些规格。(2)在空气或油中进行测试,以确定隔离屏障的内在浪涌免疫力。(3)明显电荷是由部分放电(PD)引起的电气放电。(4)屏障每一侧的所有销钉都绑在一起创建了两个末端设备
模拟开关的常见应用是时分复用,其中许多信号在单个通道上处理。高速切换允许通道上具有更高的信息容量,因为模拟开关的切换速度与最大开关激活频率直接相关。开关打开和关闭的速度越快,可能的开关频率就越高。图 7 显示了此关系的一个示例。如果开关以 1MHz 的频率激活,则必须在 500ns 的时间段内打开和关闭。由于 HI-201HS 的最大开启和关闭时间为 50ns,并且可以在 100ns 的时间段内打开和关闭,因此理论上可以以 5MHz 的频率激活它。这种改进的功能使 HI-201HS 成为需要高频数据处理的设计工程师的有吸引力的组件。与工程师的对话表明可能的应用是计算机图形和视觉显示电路设计。
如时序图 (图 2) 所示,MUX 通道选择和 A/D 转换采用流水线方式,以最大程度地提高转换器的吞吐量。转换过程从选择所需的多路复用器通道对开始。将逻辑高电平应用于 LTC1390 的 CS 输入,通道对数据在 5MHz 时钟信号的上升沿上被时钟输入到每个数据 1 输入中。然后将芯片选择 MUX 拉低,锁存通道对选择数据。然后将选定 MUX 输入上的信号应用于 LTC1410 的差分输入。在 LTC1410 的转换启动输入 CONVST 被拉低之前 700ns,芯片选择 MUX 被拉低。这对应于 LTC1390 的 MUX 开关完全打开所需的最大时间。这可确保在 LTC1410 的 S/H 捕获其样本之前,输入信号已完全稳定。
摘要 本文将介绍 SatixFy 为再生处理器有效载荷设计的 SDR ASIC,并从技术和商业角度介绍在现代 UHTS 和 LEO 星座中使用再生处理器的理由。与基本的弯管设计相比,再生有效载荷可提供更高的性能、更低的延迟、支持网状连接、简化非 GEO 星座的实施以及更好的可用性。另一方面,它可能需要更多的机载处理能力并保证面向未来的设计。即确保在卫星的整个生命周期内支持用户所需的通信协议。随着能够在上下行链路方向支持大带宽的软件定义无线电 ASIC 的引入,面向未来的再生有效载荷的实现比以往任何时候都更接近。本文将介绍 Satixfy 为有效载荷设计的 SDR ASIC,包括设计的抗辐射方面。 1. 简介 现代卫星系统,如 LEO 星座和 GEO UHTS,有望实现更高的容量和更低的每 Mbps 成本。然而,这些成本在多个方面需要以不同于过去的系统的方式解决。用户和网关之间要传输的大量信息对网关成本、位置、GEO 和 LEO 星座的效率提出了挑战。本文表明,再生式机载处理有效载荷提供了一种良好的解决方案,而现代硅片和通信技术可以缓解未来防护和功耗等问题。 2. 网关链路和相关挑战 现代 UHTS 卫星和 LEO 星座将以 1Tbps 数量级的速率向用户提供数据服务。网关大小取决于网关链路预算。如 [3] 和表 1 所示,典型的弯管 GEO 前向链路计划在波束峰值上提供 2.6 b/Hz,在峰值 ~9.5dB 时在波束 @ Es/No 上提供 2 b/Hz 平均值。返回链路较差,通常为 ~1-1.5 b/Hz(平均为 1.2b/Hz)。在 LEO 情况下,也采取类似的假设,考虑到由于卫星往返远程用户的移动而导致的更大动态范围变化。在弯管实施的情况下,GW 链路的效率与用户链路相同,平均为 2 b/Hz。在这样的弯管系统中,GW 链路效率与用户链路相同,GW 容量受 Ka 或 Q/V 频段的总带宽可用性限制。1Tbps 卫星将需要 500 GHz 的总 GW 容量。在 Ka 频段使用 2.5 GHz 和 2 个极化将需要 100 个独立的 GW 位置。对于回传信道,载波通常基于 MF-TDMA,大小为 1-10MHz。假设 1:4(现代网络比率)需要 250Gbps 的回传链路。使用平均 5MHz 载波会产生 (@1.2b/Hz, 20% RO) 50,000 个载波。在 LEO 弯管的情况下,复杂性会增加,因为您需要为全球每个覆盖兴趣区在卫星视线范围内设置一个 GW。当覆盖 AERO 和海上路径时,这要求在海洋中设置 GW 位置和相关回程。
•功能安全性 - 可用于帮助功能安全系统设计的文档设计:ISO6740-Q1,ISO6741-Q1,ISO6742-Q1•AEC-Q1•AEC-Q100具有以下结果: - 设备温度级:1:–40°C至125°C的环境隔离范围•隔离范围•50M隔离率•50m在1500V RMS的工作电压下 - 高达5000V RMS隔离额定值 - 高达10kV的电压 - ±150kV/μs典型的CMTI•供应范围:1.71V至1.89V至1.89V至2.25V至2.25V至5.5V至5.5V•1.71V•1.71V•1.71V至5.5V级至5.5V级别•默认输出•ISO674X-Q1-1674X-Q1-ef(ISO674X-Q1) per channel typical at 1Mbps • Low propagation delay: 11ns typical • Robust electromagnetic compatibility (EMC) – System-level ESD, EFT, and surge immunity – ±8kV IEC 61000-4-2 contact discharge protection across isolation barrier – Low emissions • Wide-SOIC (DW-16) Package • Safety-Related Certifications : – DIN EN IEC 60747-17 (VDE 0884-17) - UL 1577组件识别程序 - IEC 62368-1,IEC 61010-1,IEC 60601-1 - GB 4943.1
