50 par. L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 1.5 x 3.5 x 0.8 英寸 1.8 盎司 <2 米 RMS <30ns RMS 1Hz <45s <1s <1s 1 RS - 232、警报、10 / 25 / 50 / 100MHz、1PPS 115、200 -20 至 +85' 11.0 - 14.0 V <3.5W 5V 添加四个 25MHz LVDS 输出(50MHz 选项)、一个 100MHz 输出和一个 10MHz 输出 Mini - JLT GPSDO 50 par. L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 5.05 x 1.38 x 0.7 英寸 2 盎司 <2 米 RMS <15 纳秒 RMS 1Hz <45 秒 <1 秒 <1 秒 2 TTL / USB NMEA - 0183、SCPI、10MHz 9600bps 异步 -30 至 +70 5V <2.5W 3.3V / 5V Trimble Mini - T Legacy 更换单元,具有改进的相位噪声、ADEV 和更宽的温度范围 LC_XO GPSDO 10MHz 50 标准杆。 L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 0.97 x 0.97 x 0.5 <1oz <2m RMS <30ns RMS 1Hz <45s <1s <1s 1 TTL NMEA - 0183、SCPI、10MHz 9、600 - 115、200 -35 至 +75 3.3V <0.55W 5V 可插座低成本 GPSDO 模块,具有 1 平方英寸的占位面积和 10MHz 输出 日本无线株式会社 www.jrc.co.jp/eng/
•D2 - 从增量编码器发出的脉冲;通过FOD817 OptoCOPLER分离。在输出侧我使用了大约1k电阻器将开放式收集器连接到5V。•D3,D4 - A,B输入来自增量编码器;不需要上拉电阻•D5 - 旋转编码器按钮的输入;不需要上拉电阻•D6 - 用户输出B - 使用晶体管我要切换5V继电器,以打开13.8V TRX电源的功率。不要忘记继电器周围的反平行二极管。请注意,继电器必须为5V,因为最初在电源降低时,Arduino董事会仅由USB(5V)供电。•d7,d8,d9,d10,d11,d12 - 连接到4线设置中使用的2x16字符lcd显示器(RS,E,D4,D5,D5,D6,D7)。r/w输入的LCD显示器已连接到地面,因为只执行了要显示的写入。通过电压分隔器•D13 - 控制显示器的背光;如果不活动较长的背光熄灭•A0 - h-bridge控件,侧面1(左)•A1-H桥控件,侧面2(右)•A2 - A2 - 适用于H-Bridge•A3 - A3 - 用户输出A;类似于用户输出B,但是在我的情况下,我要控制天线开关的24V继电器
电解性:3x Nippon Chemi-Con(1-5,000H @ 105°C,16V,KZE),9x Nippon Chemi-Con(4-10,000H @ 105°C,5V-16V,KY),1x Nippon
参数符号最小单位工作温度1)T A -40 +125°C正电源电压2)V DD 1 5.5 V表2 1)通过在初始设备资格下进行采样确认最大工作温度。生产中,所有设备均在 +25°C 2)v dd = 1V = 1V(在 +25°C下保证)(见图14有关更多信息)电气特性t a = +25°C,除非另有指定的参数符号测试条件最小。typ。最大Unit Supply current I DD V DD = 5V, output open 38 50 µ A Threshold voltage V TH C, I, O 2.94 3.02 3.10 V V TH D, J, P 3.62 3.72 3.82 V V TH F, L, R 4.27 4.39 4.51 V Threshold hysteresis V HYS 5 mV RES Output Low Level V OL V DD = 1.6V, I OL = 1mA 200 270 mV V OL V DD = 2.5V, I OL = 2mA 195 250 mV V OL V DD = 3.5V, I OL = 3mA 198 250 mV V OL V DD = 5V, I OL = 4mA 185 250 mV RES Output High Level V OH V DD = 1.6V, I OH = -1mA 1.25 1.36 V V OH V DD = 2.5V, I OH = -1.5mA 2.2 2.3 V V OH V DD = 3.5V,i OH = -2.5mA 3.15 3.15 3.27 v oh v dd = 5V,i OH = -3.5mA 4.65 4.65 4.65 V输出泄漏电流1)I泄漏V DD = 5V 0.005 1 µ A仅适用于版本B,H和N参数符号符号测试条件。typ。最大单位电源电流i dd v dd = 5V,输出打开19 31 µ a阈值电压v t b,h,h,n 2.56 2.65 2.74 V阈值滞后v hys v hys 32 mv
电子和电信工程部,AISSMS的理工学院,浦那,马哈拉施特拉邦,印度摘要:本文使用单个超声波传感器,Arduino板和带有驱动程序模块的5V步进电机的单个超声波传感器,Arduino板和5V步进电动机的设计和实现。该项目的目的是创建一个能够在整个360度范围内扫描环境的低成本,有效的类似系统。安装在步进电机上的超声波传感器允许在多个角度位置进行距离测量,从而提供周围区域的全面空间映射。Arduino董事会充当中央控制器,处理传感器数据采集,电机控制和实时数据处理。5V步进电动机与驱动器模块结合使用,可实现精确的旋转运动以进行准确的扫描,同时确保平稳可靠的操作。在各种应用程序中都证明了系统的功能,例如障碍物检测,环境映射和基本自主导航。本文还讨论了系统集成过程中遇到的挑战,包括实现准确的电机控制,传感器校准以及为实时数据可视化管理处理速度。结果表明,该雷达系统由负担得起的组件提供动力,是用于在机器人技术,监视和教育项目中应用的有效解决方案。
当 Type-C 和 Type-A 其中一个端口接入设备时, Type-C 或 Type-A 端口都可以实现独 立的快充功能。当 Type-C 和 Type-A 都接入设备时, XPD977 会将输出电压降至 5V 给设 备供电,其中 Type-C 端口 PD 只广播 5V/3A ,保留 BC1.2 以及 Apple 2.4A ,而 Type-A 端 口则只保留 Apple 2.4A 。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时, Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。 XPD977 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。此外, Type-A 口 充饱关断电流阈值低至 10mA ,可支持智能穿戴设备小电流充电。
Supporting Multiple USB Ports Simultaneously 2 USB A output ports 1 USB C input/output port 1 USB B input port or Lightning input port or C input/output port Fast Charging Every port supports fast charging Support QC2.0/QC3.0/QC3+ output Support FCP input/output Support AFC input/output Support SCP input/output Support VOOC input/output Support DRP try.SRC, PD3.0 input/output Support BC1.2,Apple Integrated USB PD2.0/PD3.0 Protocol Support PD2.0 input/output protocol Support PD3.0 input/output and PPS output protocol Support 5V/9V/12V/15V/20V input Support 5V/9V/12V/15V/20V output Support adjustable voltage in 20mV increments in PPS Mode Integrate hardware Bi-phase mark codec (BMC) protocol Integrate Physical Layer protocol Integrate hardware CRC Support Hard Reset Integrates recognition and support of emark cable Power Control Integrated bidirectional BUCK-BOOST NMOS driver Integrated charge-pump to control external NMOS Charge Adaptive charging current adjustment支持3.65V/4.15V/4.2V/4.2V/4.3V/4.35V/4.4V电池支持2/3/4/4/5电池串联支持充电磷酸锂磷酸锂电池(3.65V(3.65V)(boost)to(boost)to boost to(boost)最大输出功率100w
这里有一些示例,说明如何错误地测量输入和输出电压会影响效率。如果电池充电器的输入电流为2a,但是从适配器到电池充电器输入引脚的电阻为100MΩ,那么影响是什么?欧姆定律,这是从适配器到输入引脚的200mv下降。假设效率为92%。如果输入引脚实际上是5V,则适配器为5.2V,并且电池在4V/2.3a时充电,则记录的效率约为88.5%,使用5.2V适配器电压,如公式2所示。对零件热性能的评估产生巨大影响。第二,以相同的示例(92%的效率,5V/2A输入,4V/2.3A电池),但现在使测量的电池电压3.8V在电池端子处。这是87mΩ的下降,使计算的效率为87.4%,如公式3所示。
表 4 的注释:1. 必须注意适当的电流降额,以将结温保持在最高允许结温以下。2. 如果满足以下条件,则由于电源从交流 (AC) 转换为直流 (DC) 而产生的残余周期性变化(也称为“纹波”)是可以接受的: – 纹波电流的频率为 100Hz 或更高 – 每个周期的平均电流不超过最大允许直流正向电流 – 纹波的最大幅度不超过最大峰值脉冲正向电流 3. 占空比 ≤ 50%,脉冲宽度为 5 毫秒。4. 如果这些事件的持续时间不超过 10 毫秒,反向电压的幅度不超过 5V,反向电流小于 220uA,则由于电气开关或电源中断而产生的瞬态反向电压和浪涌电流是可以接受的。5. 最长 10 秒的最大 5V 反向电压是可接受的使用寿命开始的一次性测试条件。
发射极-基极击穿电压 V(BR)EBO IE =10uA, IC =0 5 V 集电极截止电流 I CBO V CB =30V, IE =0 100 nA 发射极截止电流 I EBO V EB =5V, IC =0 100 nA h FE(1) V CE =2V, IC =5mA 40 h FE(2) V CE =2V, IC =150mA 63 250 直流电流增益 h FE(3) V CE =2V, IC =500mA 25 集电极-发射极饱和电压 V CE(sat) IC =500mA, IB =50mA 0.50 V 基极-发射极电压 V BE V CE =2V, IC =500mA 1.00 V 转换频率 f TV CE =5V, IC =10mA,f=100MHz 130 MHz h 的分类FE(2) 等级 BCX54 BCX55 BCX56
