CDF 剩余约 60K 立方码的存储容量,根据目前的疏浚要求,相当于 6 年的港口运营。 启动了疏浚物质管理计划 (DMMP),以确定适合放置至少 20 年沉积物的位置。 2022 财年机构工作计划投资资助了沉积物采样、特性和分析。 2022 财年启动了 2,290 线性英尺的南北防波堤修复设计工作,并将在 2024 财年继续。 2022 财年还资助了防波堤安全维护,包括标牌、安全梯和栏杆。 在 2023 财年,政府浮动工厂完成了北防波堤和南防波堤湖畔端和北防波堤港口端的石头放置工作。 2007 年《水资源开发法案》 (WRDA) 授权将上部航道段加深至 18 英尺(之前为 12 英尺),但尚未提供拨款。
生成模型近年来因其在需要估算和采样数据分布以生成高保真综合数据的任务方面取得了巨大成功而引起了越来越多的关注。在语音,文本到语音综合和神经声码器中是生成模型的好例子。虽然生成模型已应用于语音中的不同应用,但没有直接模拟语音的通用生成模型。在这项工作中,我们通过显示单个预训练的属性模型来朝着这个方向迈出了一步,可以适应具有很强性能的不同下游任务。具体来说,我们预先训练了一个名为SpeechFlow的生成模型,该模型在60k小时的未转录语音和流量匹配和蒙版条件下进行了预先培训。实验结果表明,预先训练的生成模型可以通过特定于任务的数据进行微调,以匹配或超过有关语音增强,分离和合成的现有专家模型。我们的工作建议使用生成的预培训来构建语音生成任务的基础模型。可以在https://voicebox.metademolab.com/speechflow.html上找到音频样本。
很大一部分人口都在使用膳食补充剂,但有关其药理相互作用的信息并不完整。为了应对这一挑战,我们推出了 SUPP.AI,这是一款用于浏览从生物医学文献中提取的补充剂-药物相互作用 (SDI) 证据的应用程序。我们训练一个模型来自动提取补充剂信息并从科学文献中识别此类相互作用。为了解决缺乏用于识别 SDI 的标记数据的问题,我们使用与识别药物-药物相互作用 (DDI) 密切相关的任务的标签进行监督。我们使用标记的 DDI 数据对 RoBERTa 语言模型的上下文词表示进行微调,并应用微调后的模型来识别补充剂相互作用。我们从 2200 万篇文章(P=0.82、R=0.58、F1=0.68)中提取了 195000 个证据句子,涉及 60000 次交互。我们创建了 SUPP.AI 应用程序,供用户搜索由我们的模型提取的证据句子。SUPP.AI 旨在通过让研究人员、临床医生和消费者更容易发现有关 SDI 的最新证据来弥补膳食补充剂的信息差距。
摘要:对未来电子应用的原子较薄的半导体对单层(1L)硫属(例如MOS 2)(例如化学蒸气沉积(CVD)生长)非常关注。然而,关于CVD生长的硒的电性能,尤其是Mose 2的报告很少。在这里,我们比较了CVD生长的1L和BiLayer(2L)Mose 2的电性能,并由子材料计的ALO X封顶。与1L通道相比,2L通道表现出约20倍较低的接触电阻(R C)和〜30倍的电流密度。r c通过ALO X封盖进一步降低> 5×,这可以提高晶体管电流密度。总体而言,2L ALO X盖的Mose 2晶体管(约500 nm的通道长度)可提高电流密度(在V DS = 4 V时约为65μM /μm),良好的I ON / I ON / I ON / I ON / I OFF> 10 6,R C为约60kΩ·μm。 1L设备的性能较弱是由于它们对处理和环境的敏感性。我们的结果表明,在不需要直接带隙的应用中,2L(或几层)比1L更可取,这是对未来二维电子产品的关键发现。关键字:丙象钼,单层,双层,接触电阻,晶状体效应晶体管,氧化物封盖,掺杂,2D半导体
图片列表 图 1.1:层流分离泡(Gad-El-Hak 提供)....................................................... 4 图 1.2:层流分离泡压力分布(Gad-El-Hak 提供)....................................... 7 图 1.3:表面油流 – 示例(Lyon 提供)................................................................. 9 图 1.4:表面粗糙度的影响(Gad-El Hak 提供)....................................................... 13 图 1.5:翻折翼型和未翻折翼型的阻力比较(Lyon 提供).................................... 14 图 2.1:改进的 S5010 顶部 MCL(Shkarayev 提供)......................................................... 21 图 2.2:n 阶多项式 MCL 的示例............................................................................. 22 图 2.3:翼型形状参数的描述............................................................................. 23 图 2.4:n 阶 MCL 比较...................................................................................................... 24 图 2.5:带定义多边形和控制点的贝塞尔曲线............................................................... 26 图 2.6:带定义多边形和控制点的贝塞尔 MCL ............................................................ 28 图 2.7:贝塞尔 MCL 比较......................................................................................................... 28 图 2.8:贝塞尔翼型前缘形状细节......................................................................................... 30 图 2.9:贝塞尔翼型后缘形状细节.........................................................................................
Si 基光子集成电路 (PIC) 将光学活性元件单片集成在芯片上,正在改变下一代信息和通信技术基础设施 1。在寻找基本的直接带隙的过程中,人们对 IV 族半导体合金进行了深入研究,以获得电泵浦连续波 Si 基激光器。沿着这条路径,已经证明可以通过化学计量和应变工程将新开发的 GeSn/SiGeSn 异质结构的电子带结构调整为直接带隙量子结构,从而为激光提供光增益 2。在本文中,我们介绍了一种多功能电泵浦激光器,它在低温下发射近红外波长为 2.35 µm 的低阈值电流为 4 mA(5 kA/cm 2)。它基于 6 周期 SiGeSn/GeSn 多量子阱结构,沉积在具有弛豫 Ge 缓冲层的 Si 衬底上。通过定义一个圆形台面结构来制作小尺寸微盘腔激光器,该结构蚀刻穿过层堆栈直至 Si 衬底。随后,通过去除此区域的 Ge 缓冲层,将盘的边缘蚀刻 900 nm。剩余的 Ge 基座用作 p 接触区以及激光器的散热器(图 1 a、b)。在这个简单的结构中,由于 SiGeSn 的导热性较差,有源区的实际晶格温度比热浴 T b 高约 60K。但是,激光器在 T b =40K 以下以连续波 (CW) 模式工作,但也可以在 T b =77K 时以直接调制模式高效工作至 ns 脉冲。
其他经验 协议实验室志愿者顾问(2018 年夏季)、顾问 2021 - 加速科学的软件工具 Encultured AI 顾问,2022 年 9 月 - 非常规 AI 安全相关平台 OccamzRazor 顾问委员会成员 (2015-2018) 科学家的知识捕获和共享平台 Expii 科学知识图谱顾问 (2014) 在线参与式数学教育。 Beagle 联合指导(与 Juan Batiz-Benet 合作)一个开发科学文献社交注释工具的项目(2014-)[暂停] 房利美和约翰赫兹基金会奖学金采访员(2015-) 确定下一代科学/工程领袖 开放慈善项目科学顾问(2013-2016) 就生物工具和技术、人工智能、纳米技术、科学政策等提供建议 脑保护基金会科学顾问(2015-2018) 香农实验室非正式咨询(2018 年夏季) 麻省理工学院媒体实验室“科学+艺术/设计/工程的未来”咨询小组成员(2016-)[10,000 美元奖金] Wyss 中心(日内瓦) 战略输入 Neuralink(2016 年 7 月 - 11 月) 为后来成为 Neuralink 的公司提供早期无偿咨询 - 直接为 Elon Musk 提供建议,帮助培育初始团队 志愿执行顾问:转化生物技术研究所( IXBio) (2018) 为英国政府成员提供非正式的科学政策建议 科学同行评审:PLoS 计算生物学、JoVE、Nature Communications、麻省理工学院出版社、Neuron、ICLR BAICS、NeurIPS,Frontiers 科学研讨会客座编辑 组织:“科学技术的瓶颈”,与 Geoff Anders、Jose Luis Ricon 和 Larissa Hesketh-Rowe 共同组织 (2021) “分子增材制造”,英国剑桥大学,领导的研讨会 (2016) 与领先的纳米技术专家一起勾勒出如何制造分子 3D 打印机 Kavli Futures Symposium,“走向皮质计算分类法”,与 Gary Marcus 共同组织,由 Kavli 基金会资助 6 万美元 (2015) Cosyne Workshop,“用于地面真实神经科学的工具和方法”,与 Annabelle Singer 共同组织(2015) CIFAR 心机链接研讨会 (2019),与 Blake Richards 和 Alona Fyshe 联合组织 纽约干细胞基金会研讨会,“免疫工程”,共同发起研讨会 (2015) 其他:共同创建者:神经技术架构网络,在白宫 BRAIN 计划 2014 年 9 月 30 日公告中介绍,http://neuroarchitecting.org/ 参与者:NTC 神经伦理研讨会 (2017)、Kavli 未来研讨会:神经技术 (2017)、宾大大脑深度学习研讨会 (2018) 报告员:BrainX.io 全球大脑研究协调会议 (2016)
DOE:能源部、DOD:国防部、NREL:国家可再生能源实验室、NETL:国家能源技术实验室、ORNL:橡树岭国家实验室、AFRL:空军研究实验室、AFTC:空军测试中心、HAFB:霍洛曼空军基地、MHPCC:毛伊高性能计算中心、UTEP:德克萨斯大学埃尔帕索分校、GFDL:地球物理流体动力学实验室、MHD:磁流体动力学、HPC:高性能计算研究资助的研究活动● UTEP(PI Kumar、Bronson、Sharma、Tandon、Tosh)、UNM(Lead、PI Vorobieff)、NMSU、NMT、PVTAMU V 和 Sandia(PI Tezaur)。,“里奥格兰德百亿亿次级模拟高级研究联盟 (Grande CARES)”,DOE NNSA MSIPP,2022-27,500 万美元(UTEP 125 万美元) ● V. Kumar (PI),“6 马赫钝拱顶的边界层转变测量”,AFOSR,2022-24,65 万美元 ● V. Kumar (PI),扩大国家高级建模与仿真基金会,DOE/ASCR,2022-23,4.4 万美元 ● A. Bronson (PI)、V. Kumar (Co-PI)、O. Cedillos (Co-PI),“HF 合金熔体反应润湿形成 B4C 填料床陶瓷复合材料”,AFOSR,2021-2024,45 万美元 ● V. Kumar ( PI )、R. Edmonds (合作者 - 霍洛曼空军基地),“HHSTT 雪橇水制动现象的 CFD 建模”,AFOSR, 2019 年 6 月 - 2022 年 12 月,360,000 美元(AFOSR 270,000 美元)● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2022 年,60,000 美元● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2021 年,65,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2020 年,64,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会(TWC),2019 年,32,000 美元 ● V. Kumar (PI)、N. Agarwal (Co-PI),“探索针对 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2018 年,26,000 美元 ● C. Ramana (PI)、V. Kumar (CO-PI)、A. Bronson (CO-PI)、D. Hodges (CO-PI),“收购原子层沉积系统以实现用于极端环境应用的先进高电气强度材料”,AFOSR,2019-20 年,590,000 美元 ● V. Kumar ( PI )、R.Gudimetla (合作者 –AFRL),“遥感和成像物理学:开发深湍流对长路径激光传播影响的新指标”,AFOSR,2017 年 5 月 – 2020 年 5 月,150,000 美元 ● A. Bronson (PI)、V. Kumar (Co-PI),“Hf-Ti-Me 合金熔体与 B4C 的计算实验反应润湿”,AFOSR,2017 年 8 月 15 日 – 2020 年 8 月 14 日,668,710 美元(AFOSR 45 万美元)● V. Kumar (PI)、W. Spotz(合作者 – Sandia),“流化床实验的高保真计算模型”,NETL - 能源部-化石能源,2015 年 9 月 1 日 – 2018 年 8 月 31 日,400,000 美元● V. Tandon (PI)、V. Kumar (Co-PI)、N. Soheil (Co-PI)、C. Ferregut (Co-PI)、W. Stern - GFDL (合作者),● V. Kumar (Co-PI),“了解气候变化对德克萨斯州交通系统的影响和成本”,TxDOT,2015 年 9 月 - 2017 年 8 月,25 万美元 ● V. Tandon (PI)、V. Kumar (Co-PI),“了解气候变化对公路水力设计程序的影响”,SPTC 研究、教育和推广支持,2015 年 11 月 1 日至 2017 年 10 月 31 日,9 万美元 ● V. Kumar (PI),“Sunshot 粒子接收器项目:近黑体、封闭式粒子接收器与流化床热交换器集成”,分包(NREL、DOE),2014 年 12 月 - 2015 年 3 月,27,808 美元
