1工程,应用材料,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州大学广场15801。2机械与核工程,宾夕法尼亚州立大学,宾夕法尼亚州大学公园,16802,美国3应用研究实验室,宾夕法尼亚州大学公园,宾夕法尼亚州16802美国摘要:结构性 - 托管加工关系已在添加性生产的TI-6AL-4V合金中进行了研究。使用原位电子显微镜(EM)以中等电流密度为5x10 5 A/cm 2进行5分钟进行处理,并通过抑制大量散热器的焦油加热,以使温度升高<180°C,并且机械性能不及时化。结果表明,虽然晶粒尺寸增加了约15%,但纳米性质增加了16%。这归因于明显的脱位产生,再生和聚类以及缺陷愈合。最终,残余应变降低,内在强度显着增加,这是由电流加工样品的高泰勒因子所证明的。这种新颖的加工技术代表了可能对高温处理或常规方法敏感的零件进行主动控制微观结构和内部缺陷的替代途径。关键字:电流处理;纳米纳斯;电子反向散射衍射(EBSD);透射电子显微镜(TEM); Schmid因子;泰勒因子。1。简介
节省时间和更快的综合企业可用性,这尤其是当今对快速市场推出的需求。与带有粉末床的添加过程不同,例如激光粉末床融合,可用于生产高度构图的几何形状,基于粉末喷嘴的基于粉末喷嘴的进程,例如激光定向能量沉积(DED-L),也称为激光金属沉积(LMD),可构成组合模型和构建率和构建率和高构建率和乘积和乘积和乘积和乘积。Ti - 6AL - 4V等钛合金在工业应用中广泛使用。由于其出色的机械函数,低密度以及出色的耐腐蚀性和生物相容性,因此它们在医疗和牙科应用中或飞机扇区中的金属组件中使用,例如在高温下在涡轮机工作中的压缩机叶片中应用。[2 - 4]取决于制造过程的条件以及最终的后热机械治疗的特征,Ti - 6AL - 4V可以具有不同的微结构特征,这显着影响其性质。[2]两个阶段α和β的先验β晶粒的形态和排列是这些特征的例子。deD-l分量的微结构主要是通过具有柱状形状的先验β晶粒来表征的。[4,5]常规钛合金中的两个极端排列的极端情况是层状微结构和e词微结构。两种类型的微观结构都可以具有两个阶段的细节和粗整体。[2,6]相位的大小(纤维或粗糙)及其排列(层层或等词)会影响机械性能。这些依赖性已被广泛研究,例如,关于强度,螺旋,蠕变和疲劳行为的已知。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
1 华南理工大学机电与汽车工程学院,广州 510641;mewdlaser@scut.edu.cn (DW); 202020100649@mail.scut.edu.cn (HW); xjchan001@163.com (XC) 2 宁波大学冲击与安全工程教育部实验室,宁波 315211 3 攀钢集团研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花 617000;ludong_1786@163.com (DL); cgvermouth2022@163.com (XL) 4 四川省先进金属材料增材制造工程技术研究中心,成都先进金属材料产业技术研究院有限公司,成都 610300,中国 * 通讯作者:liuyang1@nbu.edu.cn (YL); cjhan@scut.edu.cn (CH)
摘要:在这项工作中,Ni-Alloy Deloro-22在具有多组激光处理参数的Ti-6al-4V bar底物上激光沉积。目的是在Ti -6al -4V的表面上施加激光表面修饰,以合成延性Tini和硬ti 2 Ni金属间相的不同组合,以获得可调节的表面特性。扫描电子显微镜,能量分散光谱和X射线衍射剂用于揭示沉积的表面微观结构和相。讨论了加工参数对Tini和Ti 2 Ni产生组成的影响。评估了沉积的硬度,并进行了与Ti -6al – 4V散装部分的比较。他们在激光处理后在Ti-6al-4V合金上表现出显着改善,并且通过使用这种激光辅助的表面修饰技术,可以通过使用硬度来显着调节硬度。
本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
摘要 本文详细介绍了如何使用 Rietveld 细化软件 MAUD 评估单相和双相材料的晶体学织构,并将其应用于洛斯阿拉莫斯国家实验室 (LANL) 获得的高压择优取向 (HIPPO) 中子衍射数据和增材制造生产的 Ti-6Al-4V 的电子背散射衍射 (EBSD) 极图。本文解决了 Rietveld 细化和软件操作中固有的许多隐藏挑战,以改善用户使用 MAUD 时的体验。本文对 MAUD 细化过程中的每个步骤进行了系统评估,重点是为任何版本的 MAUD 和任何材料系统设计一致的细化过程,同时也指出了以前开发的流程所需的更新。本文记录并解释了用户可能遇到的许多问题,并进行了多层次评估,以验证任何数据集的 MAUD 细化过程何时完成。还简要讨论了适当的样本对称性,以强调从 MAUD 中提取的纹理数据可能过于简单。本研究的附录中包含了两个应用所述过程的系统演练。这些演练的文件可在以下数据存储库中找到:https://doi.org/10.18434/mds2-2400。
摘要 - 在体内种植的人工部分的材料选择过程一直是至关重要的程序。植入物的生产和施工要求将涉及从机械规格到医疗限制的各种考虑。从机械的角度来看,需要植入物表现出尽可能近的骨骼的机械性能,以降低失败的风险并为患者提供高水平的舒适度。假肢必须拥有的最大胆的医学特征是生物相容性存在的质量;意思是,它们必须被人体的生物体接受。In this paper, five common biocompatible materials as candidates for hip prostheses production namely, 316L St Steel (cold worked, ASTM F138), Co–28Cr–6Mo (cast, ASTM F75), Ti–6Al–4V (hot forged, ASTM F620), Zirconia (ceramic, 3Y-TZP) and Alumina (ceramic, ZTA)通过加权特性的方法选择和评估,以缩小搜索范围,以找到最适合真正骨骼机械性状的候选者。进行分析,考虑了六个属性,并相互加权,即弹性模量,屈服强度,拉伸强度,疲劳强度,腐蚀速率和密度。从结果中,氧化铝和不锈钢显示出最高的性能索引,但由于所需的生物相容性的重要性,因此在实用中所需的生物相容性的重要性,排名在钴和钛合金的第四和第五位的材料分别是与该行业中最可取的选择。的确,生物相容性特征超过与真实骨骼的最高机械相似性。将得出结论,在植入物材料选择过程中,WPM不能仅仅预测最佳候选人,除非将结果与有关身体对候选材料的反应的实验数据进行比较。版权所有©2015 Penerbit Akademia Baru-保留所有权利。
摘要本文研究了使用石墨烯血小板(GPL)增强泡沫核心和磁性电动弹性(MEE)表面层使用正弦曲线上阶剪切剪切剪切剪切剪切剪切理论(Shssdt)的智能砂纳米板中弯曲,纵向和剪切波的传播。建议的纳米板由位于MEE表面层之间的Ti -6al -4V泡沫芯组成。MEE表面层是由钴铁岩(COFE 2 O 4)和丁烷(Batio 3)的体积组合组合的。泡沫芯和MEE面部层的材料特征取决于温度。在这项研究中,考虑了三种不同的核心类型:金属固体核(类型I),GPL增强固体核心(类型-II)和GPL-辅助泡沫核心(III型)以及三个不同的泡沫分布:对称性foam I(S-FOAM I(S-FOAM I(S-FOAM I),Sy-FOAM I(S-FOAM I),Symmetrical FOAM II(S-FOAM II(S-FOAM II II)和UN-FOAM II(UN-FOAM)。使用纳米板的运动方程并确定了系统的响应,汉密尔顿的原理和Navier的方法被采用。通过分析计算研究了各种参数,例如波数,非局部参数,泡沫空隙系数和分布模式,GPL体积分数,GPL体积分数以及热,电和磁性电荷对相位速度和波频频率进行了分析计算研究。研究的发现表明,夹层纳米板的3-D波传播特性可以对外部载荷和材料参数进行大量修改或调整。因此,预计所提出的三明治结构将为雷达隐形应用提供重要贡献,保护纳米电机力学设备免受高频和温度环境的影响,智能纳米电机力学传感器的进步,其特征在于轻质和温度灵敏度以及可穿戴设备的应用。
