1 Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK 2 Biobizkaia Health Research Institute, Basque Country University, Basurto University Hospital, OSI Bilbao-Basurto, Centro de Investigaci ó n en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 48903 Barakaldo,西班牙3 3 3 3日,心理学和神经科学研究所,伦敦国王学院,伦敦WC2R 2LS,英国伦敦WC2R 2LS,4儿童和青少年心理健康服务,南伦敦和莫德斯利NHS NHS NHS NHS NHS NHS NHS基金会Trust,伦敦SE5 8AZ,英国5 8AZ,英国5号伦敦和相关的神经发展,伦敦,伦敦和Mauds diblefentment and Mauds and n n n of Seply&Mauds and n n forvelosion and Mauds and n n n n forvelosion&Mauds and n.儿童和青少年精神病学系,精神病学和心理健康研究所,医院一般大学,GregorioMarañón医学院和健康心理学,伦敦大学学院,伦敦WC1E 6BT,英国8 National&Specialist OCD,BDD和相关疾病诊所,南伦敦和Maudsley NHS基金会信托基金会,伦敦SE5 8AZ,英国 *通信:Claudia.Aymerich@kcl.ac.ac.uk(C.A.(C.A.)); gonzalo.salazar_de_pablo@kcl.ac.uk(g.s.d.p.)
1心脏病学系,伊拉斯mc MC,鹿特丹大学医学中心,荷兰鹿特丹摩伦沃特尔林博士40,3015GD; 2生物统计学系,伊拉斯姆斯MC,鹿特丹大学医学中心,莫伦沃特尔博士40,3015GD,荷兰鹿特丹; 3西北诊所心脏病学系,威廉米纳兰(Wilhelminalaan)12,1815 JD,荷兰阿尔克马尔(Alkmaar); DELFT技术大学的Delft BioInformatics Lab 4,Van Mourik Broekmanweg 6,2628 Xe,Delft,Delft,荷兰; 5免疫学系,伊拉斯mc MC,鹿特丹大学医学中心,摩伦沃特尔博士40,3015GD,鹿特丹,荷兰; 6病理学系,伊拉斯mus MC,鹿特丹大学医学中心,莫伦沃特尔博士40,3015GD,鹿特丹,荷兰; 7 Somalogic,Inc。,2945 Wilderness Pl。,Boulder,Co 80301,美国; 8美国公共卫生科学系,亨利·福特卫生系统,1福特PL,底特律,密歇根州48202,美国; 9亨利·福特医院(Henry Ford Hospital),亨利·福特医院(Henry Ford Hospital),2799 W. Grand Boulevard,底特律MI,美国48202,亨利·福特医院; 10心脏和血管研究所,亨利·福特医院,2799 W. Grand Boulevard,底特律,密歇根州48202,美国; 11阿姆斯特丹大学医学中心,阿姆斯特丹大学心脏病学系,Meibergdreef 9,1105 AZ,阿姆斯特丹,荷兰; 12英国卫生数据研究研究所和健康信息学研究所,伦敦大学学院,伦敦高尔街,WC1E 6BT,英国;和13年流行病学系,伊拉斯mc MC,鹿特丹大学医学中心,莫伦沃特尔博士40,3015GD,鹿特丹,荷兰
伦敦学院,高尔街,伦敦,WC1E 6BT,英国# 通讯作者:d.duffy@ucl.ac.uk 摘要 预测材料在各种辐照场景下结构变化的能力将对许多科学和技术领域产生积极影响。现有的大型原子系统建模技术(如经典分子动力学)因忽略电子自由度而受到限制,这限制了它们的应用范围,即主要与原子核相互作用的辐照事件。另一方面,从头算方法包括电子自由度,但所需的计算成本限制了它们在相对较小的系统中的应用。旨在克服其中一些限制的最新方法发展基于将原子模型与电子能量连续模型相结合的方法,其中能量通过电子停止和电子-声子耦合机制在原子核和电子之间交换。这种双温度分子动力学模型使得模拟电子激发对具有数百万甚至数亿个原子的系统的影响成为可能。它们已被用于研究金属薄膜的激光辐照、金属和半导体的快速重离子辐照以及金属的中高离子辐照。在这篇综述中,我们描述了双温度分子动力学方法及其实施所需的各种实际考虑。我们提供了该模型在适应电子激发的多种辐照场景中的应用示例。我们还描述了在模拟中包括由于电子激发而引起的原子间相互作用的改变的影响所面临的挑战以及如何克服这些挑战。关键词辐射损伤;双温度模型;分子动力学;电子效应;激光辐照;快速重离子
1 格罗宁根大学泽尼克先进材料研究所,Nijenborgh 4, 9747 AG 格罗宁根,荷兰 2 桑迪亚国家实验室,新墨西哥州阿尔伯克基 87185,美国 3 劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔 94551,美国 4 斯坦福大学,斯坦福,加利福尼亚州 94305,美国 5 剑桥大学工程实验室,剑桥 CB2 1PZ,英国 6 埃因霍温理工大学机械工程系,埃因霍温 5600 MB,荷兰 7 IMDEA 材料研究所,C / Eric Kandel 2,E-28906 马德里,西班牙 8 马德里理工大学材料科学系,ETS de Ingenieros de Caminos,E-28040 马德里,西班牙 9 辛辛那提大学,俄亥俄州辛辛那提45221,美国 10 苏黎世联邦理工学院,CH — 8092 苏黎世,瑞士 11 加州理工学院,帕萨迪纳,CA 91125,美国 12 洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87522,美国 13 不列颠哥伦比亚大学物理与天文系和量子物质研究所,温哥华 BC V6T 1Z1,加拿大 14 伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 15 桑迪亚国家实验室,利弗莫尔,CA 94551,美国 16 先进材料模拟跨学科中心(ICAMS),波鸿鲁尔大学,D-44801 波鸿,德国 17 普渡大学材料工程学院和 Birck 纳米技术中心,西拉斐特,印第安纳州 47907,美国 18 系明尼苏达大学航空工程与力学系,美国明尼苏达州明尼阿波利斯 55455
1 格罗宁根大学泽尼克先进材料研究所,Nijenborgh 4, 9747 AG 格罗宁根,荷兰 2 桑迪亚国家实验室,新墨西哥州阿尔伯克基 87185,美国 3 劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔 94551,美国 4 斯坦福大学,斯坦福,加利福尼亚州 94305,美国 5 剑桥大学工程实验室,剑桥 CB2 1PZ,英国 6 埃因霍温理工大学机械工程系,埃因霍温 5600 MB,荷兰 7 IMDEA 材料研究所,C / Eric Kandel 2,E-28906 马德里,西班牙 8 马德里理工大学材料科学系,ETS de Ingenieros de Caminos,E-28040 马德里,西班牙 9 辛辛那提大学,俄亥俄州辛辛那提45221,美国 10 苏黎世联邦理工学院,CH — 8092 苏黎世,瑞士 11 加州理工学院,帕萨迪纳,CA 91125,美国 12 洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87522,美国 13 不列颠哥伦比亚大学物理与天文系和量子物质研究所,温哥华 BC V6T 1Z1,加拿大 14 伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 15 桑迪亚国家实验室,利弗莫尔,CA 94551,美国 16 先进材料模拟跨学科中心(ICAMS),波鸿鲁尔大学,D-44801 波鸿,德国 17 普渡大学材料工程学院和 Birck 纳米技术中心,西拉斐特,印第安纳州 47907,美国 18 系明尼苏达大学航空工程与力学系,美国明尼苏达州明尼阿波利斯 55455
1伦敦大学学院,纳尔特广场,高尔街,伦敦,WC1E 6BT,英国2巴西路德教会大学,公平。farroupilha,8001-SãoJosé,Canoas,RS,RS,92425-020,巴西摘要摘要利用量子,经典和相对论量表的越来越多的能力,以及生成的AI和量子计算的快速变化,以及通过有负责任的目的和量子的竞争力(可以实现的能力),这表明了实现的可能性(可以实现竞争力(实现)(实现),实现了实现的可能性( 共情)。社会不能与技术分开,因为情报可能会发展为平台不足的学习和解决问题的能力。概念套件被引入量子智能,相对论智能和无规模的智能,以表示学习模式,其中包含了规模特定的物质和时空特性,量子和时空属性。现代技术既有风险又有回报,并提供了实现社会有益结果的重要理论和实践手段。从理论上讲,智力是代理(人类或机器)处理多个尺度域中问题的通用能力,可以将思想重新考虑为多样性,同时性和便携性的操作,从而将世界的范围开放给传统个人自我和地方社区以外的更广泛的关注领域。实际上,产生对社会负责的人工智会可以通过“摩尔的AI法则”的分阶段方法进行,其中包括短期监管和注册表,中期内部学到的奖励功能以及长期负责的人类AI实体。简介人类自然而然地对社会负责,但在使用针对行星规模问题的新技术成熟水平运行时,可能会更是如此。关键字1 AI对齐,对社会负责的人类实体,AI数学代理,量子智能1。
通过肌肉嗜性 AAV 衣壳和肌肉特异性启动子的双策略方法改进向骨骼肌的基因传递。作者:Annalucia Darbey 1、Wenanlan Jin 1、Linda Greensmith 1 James N. Sleigh 1,2*、John Counsell 3*、Pietro Fratta 1,4* 隶属关系:1 英国伦敦大学学院皇后广场神经肌肉疾病系和伦敦大学学院皇后广场运动神经元疾病中心,伦敦大学学院皇后广场神经病学研究所,伦敦 WC1N 3BG。2 英国伦敦大学学院英国痴呆症研究所,伦敦 WC1E 6BT。3 英国伦敦大学学院外科和介入科学部靶向干预研究系,查尔斯贝尔楼,伦敦,英国 4 弗朗西斯克里克研究所;伦敦,NW1 1AT,英国 * 通讯作者:Pietro Fratta ( p.fratta@ucl.ac.uk),John Counsell ( j.counsell@ucl.ac.uk) 和 James N. Sleigh ( j.sleigh@ucl.ac.uk)。摘要基于腺相关病毒 (AAV) 的病毒载体技术已展示出将基因货物运送到体内各种器官的良好能力,过去十年中,几种新型候选病毒在人体试验中显示出临床效果。然而,天然存在的 AAV 血清型在靶向骨骼肌方面的能力有限,而骨骼肌是许多神经肌肉疾病的重要基因治疗靶点。这意味着通常需要高剂量的 AAV 才能在肌肉中达到治疗有效剂量。为了克服这个问题,新型 AAV 载体衣壳已被设计成通过将靶向肽插入 AAV9 衣壳可变区 VIII (VRIII) 来实现更高的肌肉转导效率。我们在此描述了一种新报道的衣壳,称为 MyoAAV1A,与临床验证的肌肉特异性启动子相结合。我们分析了体内递送至小鼠骨骼肌的效率,发现 MyoAAV1A 衣壳与 MHCK7 启动子的最佳组合可维持骨骼肌中的转基因表达,并减少脱靶组织(尤其是肝脏)中的表达。这突出了一种有前途的衣壳-启动子组合,可在骨骼肌基因治疗的进一步临床前研究中取得进展。图形摘要
胡一鹏 1,2,4 约瑟夫·雅各布 1,3 杰弗里·JM·帕克 1,5,6 大卫·J·霍克斯 1,2,4 约翰·R·赫斯特 3 丹奈尔·斯托亚诺夫 1,2,5 1 伦敦大学学院医学图像计算中心,2 威康/EPSRC 介入和外科科学中心,3 伦敦大学学院呼吸科,4 医学物理和生物医学工程系,5 计算机科学系,伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 6 Bioxydyn Limited,Pencroft Way,曼彻斯特,M15 6SZ,英国 通信:yipeng.hu@ucl.ac.uk 由严重急性呼吸系统综合症冠状病毒 2 引起的 COVID-19 大流行,发生在一个被基于大数据、计算能力和神经网络的人工智能(AI)迅速改变的世界。近年来,这些网络的目光越来越多地转向医疗保健领域的应用。COVID-19 是一种全球性疾病,对健康和经济造成破坏,或许不可避免地会吸引全球学术界和工业界的计算机科学家的关注和资源。AI 支持应对疫情的潜力已在广泛的临床和社会挑战 [1] 中提出,包括疾病预测、监测和抗病毒药物发现。随着疫情对世界人民、工业和经济的影响不断扩大,这种情况可能会持续下去,但对当前疫情的一个令人惊讶的观察是,迄今为止,AI 在 COVID-19 管理中的影响有限。本通讯重点探讨了在前线医疗服务中未能成功采用为 COVID-19 诊断和预后开发的 AI 模型的潜在原因。我们强调了模型在疫情的不同阶段必须解决的不断变化的临床需求,并解释了将模型转化为反映当地医疗环境的重要性。我们认为,基础研究和应用研究对于加速人工智能模型的潜力都至关重要,在迅速发展的疫情期间尤其如此。 从这个角度看,对 COVID-19 的反应,或许可以让我们一窥全球科学界应如何应对未来的疾病爆发,以更有效地应对。
a 巴勒莫大学生物、化学和制药科学与技术系,意大利巴勒莫 90123 b 麻省总医院,哈佛医学院,美国马萨诸塞州波士顿 02114 c 英国癌症研究中心剑桥中心,Hills Road,剑桥 CB2 0QQ,英国 d 新加坡国立大学杨潞龄医学院药理学系,新加坡 117600,新加坡 e 新加坡国立大学杨潞龄医学院新加坡国立大学癌症研究中心,新加坡 119077,新加坡 f 京都大学医学院,日本京都 g 古斯塔夫·鲁西癌症中心,儿童和青少年肿瘤学系,INSERM U1015,巴黎萨克雷大学,法国维尔瑞夫 h 实验治疗组,Vall d ′ Hebron 肿瘤研究所,西班牙巴塞罗那 i 卡迪夫大学和 Velindre 癌症中心,博物馆大道,卡迪夫 CF10 3AX,英国 j 南洋理工大学李光前医学院(LKCMedicine),实验医学大楼,636921,新加坡 k 新加坡国家癌症中心癌症遗传学服务(CGS),168583,新加坡 l 约翰霍普金斯大学公共卫生学院生物化学与分子生物学系,美国马里兰州巴尔的摩 m 安格利亚鲁斯金大学生命科学学院,英国剑桥 n 伦敦帝国理工学院癌症分部,英国伦敦汉默史密斯校区 o 新加坡国立大学杨潞龄医学院生理学系,117593,新加坡 p 新加坡国立大学杨潞龄医学院健康长寿转化计划,117456,新加坡 q 加利福尼亚大学格芬医学院肿瘤学系,美国加利福尼亚州洛杉矶 r 伦敦大学学院 MRC 分子细胞生物学实验室,英国伦敦 WC1E 6BT新加坡 A*STARTCentral 139955 私人有限公司
a 巴勒莫大学生物、化学和制药科学与技术系,意大利巴勒莫 90123 b 麻省总医院,哈佛医学院,美国马萨诸塞州波士顿 02114 c 英国剑桥癌症研究中心,Hills Road,剑桥 CB2 0QQ,英国 d 新加坡国立大学杨潞龄医学院药理学系,新加坡 117600,新加坡 e 新加坡国立大学杨潞龄医学院新加坡国立大学癌症研究中心,新加坡 119077,新加坡 f 京都大学医学院,日本京都 g 古斯塔夫·鲁西癌症中心,儿童和青少年肿瘤学系,INSERM U1015,巴黎萨克雷大学,法国维尔瑞夫 h 实验治疗学组,Vall d ′ Hebron 肿瘤研究所,西班牙巴塞罗那 i 卡迪夫大学和 Velindre 癌症中心,博物馆大道,卡迪夫 CF10 3AX,英国 j 南洋理工大学李光前医学院(LKCMedicine),实验医学大楼,636921,新加坡 k 新加坡国家癌症中心癌症遗传学服务(CGS),168583,新加坡 l 约翰霍普金斯大学公共卫生学院生物化学与分子生物学系,美国马里兰州巴尔的摩 m 安格利亚鲁斯金大学生命科学学院,英国剑桥 n 伦敦帝国理工学院癌症分部,英国伦敦汉默史密斯校区 o 新加坡国立大学杨潞龄医学院生理学系,117593,新加坡 p 新加坡国立大学杨潞龄医学院健康长寿转化计划,117456,新加坡 q 加利福尼亚大学格芬医学院肿瘤学系,美国加利福尼亚州洛杉矶 r 伦敦大学学院 MRC 分子细胞生物学实验室,英国伦敦 WC1E 6BT Therapeutics Pte Ltd,A*STARTCentral,139955,新加坡
