1罗马的INAF媒体观察员,通过di Frascati 33,00078 Monte Porzio Catone,意大利电子邮件:Antonello.calabro.calabro@inaf.it 2 Trieste的Inf-Asonolical Personical Personical of-B.B.通过G.B.TIEPOLO 11,34143意大利Trieste 3 Ifpu-宇宙基本物理学研究所,通过贝鲁特2,34151意大利Trieste 4 Supa 4 Supa,爱丁堡大学天文学研究所,爱丁堡大学,皇家天文台,爱丁堡EH9 3HJ,UK 5 Iniforno pom pogernonna pogernoso, /3,40129意大利博洛尼亚6博洛尼亚大学物理与天文学系(DIFA),通过Gobetti 93/2,40129 Bologna,意大利的Bologna 7 Institution of Resjuction convositionuciporpiparinar en Ciencia an Ciencia en ciencia en Ciencia y Ciencia y Ciencia y Ciencia y Ciencia ycienogía,raounnoragialial,raúlition,raúlition,laounnoragna y serano y serena塞雷纳大学,公平。Juan Cisternas 1200 Norte,La Serena,智利9 Inf -Arcetri的Astro Phyic天文台,Largo E. Fermi 5,50125佛罗伦萨,意大利佛罗伦萨10 Cosmic Dawn Center,Niels Bohr Institute,Copenhagen University,Julian Maries Maries Vej 30,Denmard Coptarys forsers forsars copenhagen大学赫特福德郡,帽子,英国,英国12个太空望远镜科学研究所,3700 San Martin Drive,Baltimore,Baltimore,MD 21218,美国13欧洲南部天台观测站(ESO),Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Niels Bohr Bohr Bohr Bohr Bohr,Bohr哥本哈格大学,Lyngbyvej 2,Lyngbyvej 2,2100 Copenhagen,2100 Copenhagen,2100 Copenhagen,Copenhagen,Copenhagen,Copenhagen,Copenhagensrack 15英国伦敦WC1E 6BT的高尔街16号Genève,deGenève大学,51 ch。des Millettes,1290 Versex,瑞士17 CNRS,IRAP,14 Avenue E. Belin,31400 Toulouse,法国18天津天文天体物理学中心,Tianjin师范大学,Binshuixida 393,300384 Tianjin,Tianjin,Prin
a 埃伯哈德卡尔斯大学理论物理研究所,72076 图宾根,德国 b 贝尔法斯特女王大学数学与物理学院理论原子、分子和光学物理中心,BT7 1NN,贝尔法斯特,英国 c 马克斯普朗克光科学研究所,Staudtstraße 2,91058 埃尔朗根,德国 d 弗里德里希亚历山大埃尔朗根-纽伦堡大学光学、信息和光子学研究所,Staudtstraße 7 B2,91058 埃尔朗根,德国 e 意大利空间公司电信和导航部门,马泰拉,意大利 f 帕拉茨基大学光学系,17.listopadu 12,77900 奥洛穆茨,捷克共和国 g 物理技术:信息和现象量化,物理系,巴塞罗那自治大学,08193 Bellaterra(巴塞罗那),西班牙 h 南安普顿大学物理与天文学院,Highfield 校区,SO17 1BJ,英国 i 德国航空航天中心 e。 V.(DLR),卫星地理学和惯性传感器技术(SI),临时地址:DLR-SI,C/O Leibniz University Hannover,Callinstraße36,30167 Hannover,德国J Leibniz大学J Leibniz University Hannover汉诺威,汉诺威E 6BT,英国l SUPA物理系,Strathclyde大学,G4 0NG,英国格拉斯哥,MIARBUS国防和太空GmbH,Robert-Koch-Straße1,82024 Taufkirchen,德国,n ljuplan,ljuplan,lj auplanjana,ljaupljana,ljaulljana,ljaupljana,lja有关量子光学和量子信息,奥地利科学院1090,维也纳,奥地利 p ZARM,不来梅大学,Am Fallturm 2,28359 不来梅,德国 q 德国航空航天中心 e。 V.(DLR),量子技术研究所(QT),Söflinger Strasse 100,89077 Ulm,德国 r 马耳他大学物理系,Msida MSD 2080,马耳他 s 的里雅斯特大学物理系,Strada Costiera 11,34151 Trieste,意大利 t 意大利国立核物理研究所,的里雅斯特分院,Via Valerio 2,34127 Trieste,意大利 u 国家光学研究所 — CNR — 的里雅斯特研究单位,Strada Statale 14,34149 Trieste,意大利
a 埃伯哈德卡尔斯大学理论物理研究所,72076 图宾根,德国 b 贝尔法斯特女王大学数学与物理学院理论原子、分子和光学物理中心,BT7 1NN,贝尔法斯特,英国 c 马克斯普朗克光科学研究所,Staudtstraße 2,91058 埃尔朗根,德国 d 弗里德里希亚历山大埃尔朗根-纽伦堡大学光学、信息和光子学研究所,Staudtstraße 7 B2,91058 埃尔朗根,德国 e 意大利空间公司电信和导航部门,马泰拉,意大利 f 帕拉茨基大学光学系,17.listopadu 12,77900 奥洛穆茨,捷克共和国 g 物理技术:信息和现象量化,物理系,巴塞罗那自治大学,08193 Bellaterra(巴塞罗那),西班牙 h 南安普顿大学物理与天文学院,Highfield 校区,SO17 1BJ,英国 i 德国航空航天中心 e。 V.(DLR),卫星地理学和惯性传感器技术(SI),临时地址:DLR-SI,C/O Leibniz University Hannover,Callinstraße36,30167 Hannover,德国J Leibniz大学J Leibniz University Hannover汉诺威,汉诺威E 6BT,英国l SUPA物理系,Strathclyde大学,G4 0NG,英国格拉斯哥,MIARBUS国防和太空GmbH,Robert-Koch-Straße1,82024 Taufkirchen,德国,n ljuplan,ljuplan,lj auplanjana,ljaupljana,ljaulljana,ljaupljana,lja有关量子光学和量子信息,奥地利科学院1090,维也纳,奥地利 p ZARM,不来梅大学,Am Fallturm 2,28359 不来梅,德国 q 德国航空航天中心 e。 V.(DLR),量子技术研究所(QT),Söflinger Strasse 100,89077 Ulm,德国 r 马耳他大学物理系,Msida MSD 2080,马耳他 s 的里雅斯特大学物理系,Strada Costiera 11,34151 Trieste,意大利 t 意大利国立核物理研究所,的里雅斯特分院,Via Valerio 2,34127 Trieste,意大利 u 国家光学研究所 — CNR — 的里雅斯特研究单位,Strada Statale 14,34149 Trieste,意大利
a 德国图宾根埃伯哈德-卡尔斯大学理论物理研究所,72076 图宾根,德国 b 英国贝尔法斯特女王大学数学与物理学院原子、分子和光学物理理论中心,BT7 1NN,英国 c 意大利的里雅斯特大学物理系,Strada Costiera 11,34151 的里雅斯特,意大利 d 意大利国立核物理研究所,里雅斯特分院,Via Valerio 2,34127 的里雅斯特,意大利 e 马克斯普朗克光科学研究所,Staudtstraße 2,91058 埃尔朗根,德国 f 弗里德里希-亚历山大埃尔朗根-纽伦堡大学光学、信息和光子学研究所,Staudtstraße 7 B2,91058埃尔朗根,德国 g 意大利空间研究机构,马泰拉,意大利 h 帕拉茨基大学光学系,17. listopadu 50,772 07 奥洛穆茨,捷克共和国 i 物理学理论:现象信息量化,巴塞罗那自治大学物理学系,08193 贝拉特拉(巴塞罗那),西班牙 j 南安普顿大学物理与天文系,Highfield 校区,SO17 1BJ,英国 k 德国空气与空间飞行中心 e。 V. (DLR), 卫星测量和惯性传感器研究所 (SI), Vorlaufige Anschrift: DLR-SI, c/o Leibniz Universitàat Hannover, Callinstraße 36, 30167 Hannover l Institut fěur Quantenoptik, Leibniz Universitàat Hannover, Am Welfengarten 1, 30167 德国汉诺威 m 伦敦大学学院物理与天文学系,WC1E 6BT,英国 n SUPA 斯特拉斯克莱德大学物理系,英国格拉斯哥 o 空中客车防务与航天有限公司,Robert-Koch-Straße 1, 82024 Taufkirchen p 卢布尔雅那大学数学与物理学院,Jadranska ulica 19, 1000卢布尔雅那,斯洛文尼亚 q 量子光学和量子信息研究所,维也纳,奥地利 r ZARM,不来梅大学,Am Fallturm 2, 28359 Bremen,德国 s Deutsches Zentrum fùur Luft- und Raumfahrt e。 V. (DLR), 量子技术研究所 (QT), Söflinger Strasse 100, 89077 Ulm, 德国 t 马耳他大学物理系, Msida MSD 2080, Malta
一种使用 CRISPR/Cas9 的靶向和可调节 DNA 损伤工具。Ioannis Emmanouilidis 1、Natalia Fili 2、Alexander W. Cook 2、Yukti Hari-Gupta 1 $、Ália dos Santos 2、Lin Wang 3、Marisa Martin-Fernandez 3、Peter JI Ellis 1* 和 Christopher P. Toseland 2 * 1 肯特大学生物科学学院,坎特伯雷,CT2 7NJ,英国。2 谢菲尔德大学肿瘤和代谢系,谢菲尔德,S10 2RX,英国。3 中央激光设施,哈威尔研究中心,科学和技术设施委员会,卢瑟福阿普尔顿实验室,哈威尔,迪德科特,牛津,OX11 0QX,英国。$ 当前位置:MRC LMCB,伦敦大学学院,伦敦,WC1E 6BT,英国。 * 通讯地址:pjiellis@kent.ac.uk 和 c.toseland@sheffield.ac.uk 关键词:DNA 损伤、Cas9、双链断裂、DNA 修复 摘要 哺乳动物细胞不断遭受各种 DNA 损伤事件,从而导致 DNA 修复途径的激活。了解 DNA 损伤反应的分子机制有助于开发针对这些途径元素的治疗方法。双链断裂 (DSB) 对细胞活力和基因组稳定性特别有害。通常,DSB 修复是使用 DNA 损伤剂(例如电离辐射或基因毒性药物)来研究的。这些会在非预测性基因组位点诱发随机损伤,而这些位点的损伤剂量难以控制。此类干预措施不适合研究不同 DNA 损伤识别和修复途径如何根据局部染色质状态在特定 DSB 位点被调用。 RNA 引导的 Cas9 (CRISPR 相关蛋白 9) 核酸内切酶是介导靶向基因组改变的有力工具。基于 Cas9 的基因组干预是通过在感兴趣的基因组区域形成 DSB 实现的。在这里,我们利用基于计算机预测的定制设计的混杂引导 RNA,在整个人类基因组中诱导特定数量和位置的 DSB 的能力。这是通过重组 Cas9-引导复合物的电穿孔实现的,该复合物提供了一种在细胞培养模型中诱导受控 DNA 损伤的通用、低成本和快速方法。引言生物体最关键的过程之一是使用 DNA 损伤监视和修复机制来维持基因组完整性。这些机制可阻止细胞通过细胞分裂进展,从而将有缺陷的基因组传播给子细胞 1。如果病变得不到修复,突变就会积累,导致细胞衰老和癌症等疾病的发作。在人类细胞中每个细胞周期大约会发生 10-50 次双链断裂 (DSB) 2,3 。
在健康衰老和疾病中自然衰老自噬的意见/审查选项1:操纵自噬以促进健康衰老Yahyah Aman 1,3†,Tomas Schmauck-Medina 1†,Malene Hansen 4,Malene Hansen 4,Richard I Morimoto 5,Anna Katharina Simon 6,Anna Katharina Simon 6,Inna simon simens imenos 8 10,Terje Johansen 11,Nektarios Tavernarakis 8,12,David C. Rubinsztein 13,14,Linda Partridge 3,15,Guido Kroemer 16-20,John Labbadia 3,*和Evandro F. Fang 1,2挪威3号健康老化研究所,挪威健康衰老中心(NO-AGE),遗传学,进化与环境部,伦敦大学学院,达尔文大楼,加尔街,伦敦WC1E 6BT,英国,达尔文大楼。4 Sanford Burnham Prebys医疗发现研究所,发展,老化和再生计划,美国92037,92037,North Torrey Pines Road,North Torrey Pines Road 10901。5分子生物科学系,赖斯生物医学研究所,西北大学埃文斯顿,伊利诺伊州60208美国。6肯尼迪风湿病学研究所,牛津大学,英国牛津,牛津大学。 7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。 8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。 和j.labbadia@ucl.ac.uk(J.L。) †这些作者同等贡献6肯尼迪风湿病学研究所,牛津大学,英国牛津,牛津大学。7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。 8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。 和j.labbadia@ucl.ac.uk(J.L。) †这些作者同等贡献7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。和j.labbadia@ucl.ac.uk(J.L。)†这些作者同等贡献9,医学院,国家和卡普迪斯特里大学雅典大学,雅典10号,希腊10分子医学系基础医学研究所和癌细胞重编程中心,诺伊,奥斯陆奥斯陆大学医学院临床医学院临床医学研究所。11分子癌研究小组,特罗姆斯大学医学生物学研究所 - 挪威北极大学,挪威9037,挪威12号基础科学系,医学院,赫拉克里昂,克里特群岛,克里特大学,克里斯特大学,希腊大学,希腊大学,希腊大学13号剑桥医学研究所,剑桥大学训练室,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·帕特里·帕特里·帕特罗夫·帕特里·帕特里克·帕特罗夫 0XY, United Kingdom 14 UK Dementia Research Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom 15 Max Planck Institute for Biology of Ageing, Department Biological Mechanisms of Ageing, Cologne, Germany 16 Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France 17 Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France 18 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France 19 Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China 20 Karolinska瑞典斯德哥尔摩Karolinska大学医院妇女与儿童健康部研究所 *通信:e.f.fang@medisin.no(E.F.F.)
美国巴黎圣母院的计算机科学与工程系,美国46556,美国。电子邮件:tmilenko@nd.edu†联合第一位作者。 #共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。 所有其他作者都以姓氏为单位顺序列出。电子邮件:tmilenko@nd.edu†联合第一位作者。#共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。所有其他作者都以姓氏为单位顺序列出。
美国巴黎圣母院的计算机科学与工程系,美国46556,美国。电子邮件:tmilenko@nd.edu†联合第一位作者。 #共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。 所有其他作者都以姓氏为单位顺序列出。电子邮件:tmilenko@nd.edu†联合第一位作者。#共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。所有其他作者都以姓氏为单位顺序列出。
美国巴黎圣母院的计算机科学与工程系,美国46556,美国。电子邮件:tmilenko@nd.edu†联合第一位作者。 #共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。 所有其他作者都以姓氏为单位顺序列出。电子邮件:tmilenko@nd.edu†联合第一位作者。#共同秒作者:第2-7节的协调员,按字母顺序以姓氏为单位。所有其他作者都以姓氏为单位顺序列出。
非人灵长类动物神经活动动态的闭环光遗传学控制 B. Zaaimi 1,2,& 、M. Turnbull 1,& 、A. Hazra 1 、Y. Wang 3 、C. Gandara 1 、F. McLeod 1 、EE McDermott 1 、E. Escobedo-Cousin 4 、A. Shah Idil 5 、RG Bailey 4 、S. Tardio 4 、A. Patel 4 、N. Ponon 4 、J. Gausden 4 、D. Walsh 1 、F. Hutchings 3 、M. Kaiser 3,6,7,8 、MO Cunningham 9 、GJ Clowry 1 、FEN LeBeau 1 、TG Constandinou 10 、SN Baker 1 、N. Donaldson 5 、P. Degenaar 4、A. O'Neill 4、AJ Trevelyan 1 和 A. Jackson 1,* 1 纽卡斯尔大学生物科学研究所,纽卡斯尔 NE2 4HH,英国。2 当前地址:阿斯顿大学生命与健康科学学院,伯明翰 B4 7ET,英国。3 纽卡斯尔大学计算学院,纽卡斯尔 NE4 5TG,英国。4 纽卡斯尔大学工程学院,纽卡斯尔 NE1 7RU,英国。5 伦敦大学学院医学物理与生物医学工程系,伦敦 WC1E 6BT,英国。6 NIHR,诺丁汉生物医学研究中心,诺丁汉大学医学院,NG7 2UH,英国。7 彼得·曼斯菲尔德爵士影像中心,诺丁汉大学医学院,NG7 2UH,英国。8 上海交通大学医学院,上海,中国。 9 爱尔兰都柏林圣三一学院医学院,都柏林 2。10 英国帝国理工学院电气与电子工程系,伦敦 SW7 2AZ,英国。 *通讯作者,andrew.jackson@ncl.ac.uk & 这些作者贡献相同。电神经刺激可有效治疗神经系统疾病,但相关的记录伪影通常将其应用限制在开环刺激。然而,通过将并发电记录和光遗传学配对可以实现对大脑活动的实时和连续闭环控制。在这里,我们表明,使用兴奋性视蛋白的闭环光遗传刺激能够精确操纵转基因小鼠和麻醉非人类灵长类动物脑切片中的神经动力学。该方法在静止组织中产生振荡,增强或抑制活动组织中的内源性模式,并调节由惊厥剂 4-氨基吡啶引起的癫痫样爆发。光学刺激相位依赖效应的非线性模型再现了与癫痫发作振荡相关的局部场电位周期调制,癫痫发作相空间轨迹的变异性和熵的系统性变化证明了这一点,这与癫痫发作持续时间和强度的变化相关。我们还表明,可以使用结合发光二极管的皮质内光极来实现闭环光遗传神经刺激。闭环光遗传学方法可能具有转化治疗应用。许多神经系统疾病会导致网络动态改变,特征是脑区内和脑区之间振荡同步性异常低或高 1 。神经调节疗法,例如深部脑刺激 (DBS),通常会提供“开环”电刺激序列,试图破坏病理模式并将脑活动保持在一定功能状态范围内。然而,从控制理论的角度来看,开环方法通常不如包含基于系统实时状态的反馈的闭环控制 2 。因此,如果通过持续的电生理测量控制神经调节疗法,可能会更有效 3,4 ,例如增强有益的振荡或破坏病理性脑状态,如癫痫发作。不幸的是,闭环神经刺激的许多潜在应用受到与电刺激相关的大量伪影的阻碍,尤其是在监测和调节相同的局部神经元群时。这通常会将控制策略限制为简单的决定,即打开或关闭原本连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传递,因此可以通过脑信号实时连续调制光刺激,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但迄今为止,闭环光遗传刺激的实验演示仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们的目标是通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们比较了通过外部光源传递的光刺激和包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装
