将父母保持在我们所做的工作的核心 - 信息和支持线0808 8010 722育儿重点有限公司在N.Reland No:NI30087注册:注册办公室:一楼,第3单元,霍索恩办公室公园,39A Stockman Way,Belfast,BT9 7ET,BT9 7ET,慈善机构:北部Ireland Charity Charity Charity Charity number Number Number Number 103666113 and Hmrc
1 安徽工业大学土木工程与建筑系,马鞍山 243002,中国;luyuehongtuzi@163.com 2 沙克拉大学电气与计算机工程系,利雅得 11911,沙特阿拉伯;malghassab@su.edu.sa 3 滨海高等理工学院电力与计算机工程学院,瓜亚基尔 EC 09-01-5863,厄瓜多尔;manuel.alvarez.alvarado@ieee.org 4 穆斯阿尔帕斯兰大学电力与能源系,穆斯 49250,土耳其;hasangunduz@ieee.org 5 米尔布尔科技大学电气工程系,米尔布尔(AK)10250,巴基斯坦 6 阿斯顿大学工程与应用科学学院、机械工程与设计学院,伯明翰 B4 7ET,英国; m.imran12@aston.ac.uk * 通信地址:zafarakhan@ieee.org
1 沙迦大学 RISE 可持续能源与电力系统研究中心,沙迦 PO Box 27272,阿拉伯联合酋长国 2 阿斯顿大学工程与应用科学学院机械工程与设计,伯明翰阿斯顿三角区 B4 7ET,英国 3 沙迦大学先进材料研究中心,沙迦 PO Box 27272,阿拉伯联合酋长国 4 米尼亚大学工程学院化学工程系,米尼亚 61519,埃及 5 贝尼苏韦夫大学高级科学研究生院环境科学与工业发展系,贝尼苏韦夫 62521,埃及 6 南谷大学工程学院机械工程系,基纳 83521,埃及 * 通信地址:aolabi@sharjah.ac.ae (AGO);awotwet@aston.ac.uk (TW); mabdulkareem@sharjah.ac.ae (MAA)
1 洪堡大学物理研究所,Newtonstrasse 15, 12489 Berlin, Germany 2 萨拉托夫国立大学生物系,Astrakhanskaya 82, 410012 Saratov, Russia 3 洛夫莱斯生物医学研究所,Albuquerque, NM 87108, USA 4 新墨西哥大学医学院神经病学系,Albuquerque, NM 87131, USA 5 光电子学和生物医学光子学组,Aston 大学光子技术研究所,Birmingham B4 7ET, UK 6 俄罗斯科学院植物和微生物生物化学和生理学研究所,Prospekt Entuziastov 13, 410049 Saratov, Russia 7 俄罗斯科学院 Shemyakin-Ovchinnikov 生物有机化学研究所,Miklukho-Maklaya 16/10, 117997 莫斯科,俄罗斯 8 波茨坦气候影响研究所,复杂性科学系,Telegrafenberg A31,14473 波茨坦,德国 * 通讯地址:glushkovskaya@mail.ru;电话:+7-8452-519220
1洪堡大学,纽约大学15,12489柏林,德国汉堡大学; juergen.kurths@pik-potsdam.de 2生物学系,萨拉托夫州立大学83,410012萨拉托夫,俄罗斯; shirokov_a@ibppm.ru(A.S。); nik-navolokin@yandex.ru(N.N.); inna-474@yandex.ru(i.b.); terskow.andrey@gmail.com(A.T。); ler.vinnick2012@yandex.ru(V.T。); anna.kuzmina.270599@mail.ru(A.T。); arina-evsyukova@mail.ru(A.E。); eloveda@mail.ru(d.z.); adushkina.info@mail.ru(V.A。); Admitrenko2001@mail.ru(A.D.); mariamang1412@gmail.com(M.M.); krupnova_0110@mail.ru(v.k。)3光电和生物医学光子学集团,AIPT,阿斯顿大学,伯明翰B4 7et,英国; e.rafailov@aston.ac.uk 4 Astrakhanskaya Str。 83,410012萨拉托夫,俄罗斯; fedosov_optics@mail.ru(i.f. ); paskalkamal@mail.ru(A.D。); dethaos@bk.ru(M.T。) 5植物与微生物生物化学与生理学研究所,俄罗斯科学院,俄罗斯萨拉托夫的Prospekt Entuziastov 13,410049,俄罗斯6病理解剖学系,萨拉托夫医学州立大学,Bolshaya Kazachaya Str。 112,410012萨拉托夫,俄罗斯; Allaalla_72@mail.ru 7 Lovelace Biomedical Research Institute,Albuquerque,NM 87108,美国; noghero@gmx.com(a.n. ); dbragin@salud.unm.edu(D.B. ); obragina@gmx.com(O.B.) 8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院 : +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)3光电和生物医学光子学集团,AIPT,阿斯顿大学,伯明翰B4 7et,英国; e.rafailov@aston.ac.uk 4 Astrakhanskaya Str。83,410012萨拉托夫,俄罗斯; fedosov_optics@mail.ru(i.f.); paskalkamal@mail.ru(A.D。); dethaos@bk.ru(M.T。)5植物与微生物生物化学与生理学研究所,俄罗斯科学院,俄罗斯萨拉托夫的Prospekt Entuziastov 13,410049,俄罗斯6病理解剖学系,萨拉托夫医学州立大学,Bolshaya Kazachaya Str。112,410012萨拉托夫,俄罗斯; Allaalla_72@mail.ru 7 Lovelace Biomedical Research Institute,Albuquerque,NM 87108,美国; noghero@gmx.com(a.n.); dbragin@salud.unm.edu(D.B.); obragina@gmx.com(O.B.)8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院 : +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院: +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)72,1784 sofifa,保加利亚; ekaterina.borisova@gmail.com 10 Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany 11 Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia * Correspondence: glushkovskaya@mail.ru (O.S.-G.); s.sokolovsky@aston.ac.uk(s.s.);电话。
剑桥,鲁滨逊路,剑桥CB2 0RE,英国。§目前针对Douglas F. Browning的讲话,阿斯顿大学生物科学学院,伯明翰B4 7et,英国,摘要:Holliday 4-Way连接是重要的生物DNA过程的关键(插入,插入,推荐和维修),并且是富有成效的结构,是开放式或封闭式构造的动力结构,采用开放式构造表现出开放式的活跃形式。四元素金属 - 苏普拉电柱在圆柱核周围显示芳基面,从而使它们具有与开放式DNA连接的中心空腔相互作用的理想结构。结合了实验研究和MD模拟,我们表明,Au柱可以以开放形式结合DNA 4向连接(Holliday连接),这是一个以前由合成剂访问的结合模式。Au pil-larplexes也可以结合设计的三向连接,但是它们的尺寸较大,使他们可以打开并扩展该连接,破坏了基本配对,这表现出增加的流体动力大小和较低的连接热稳定性。在高载荷时,它们将4路和3路连接重新安排到Y形DNA叉中,以增加可用的连接样结合位点。结构相关的Ag菌粒显示出相似的DNA连接结合行为,但溶液稳定性较低。这种柱状结合与(但补充)的金属 - 苏普拉电圆柱体形成对比,该圆柱体更喜欢3路交叉,我们表明可以将4向连接点重新布置为3路交界结构。在人类细胞中的研究,确认柱子确实到达了细胞核,其抗增生活性的水平与顺铂相似。pillexes结合开放的四向连接的能力会产生令人兴奋的可能性,以调节和切换生物学中的这些结构,以及合成核酸纳米结构中,它们是关键的组件。这些发现提供了一个新的路线图,用于使用金属 - 苏普拉氨分子方法来靶向高阶连接结构,并扩展了可用于将生物活性连接器固定器设计到有机化化学的工具箱。
非人灵长类动物神经活动动态的闭环光遗传学控制 B. Zaaimi 1,2,& 、M. Turnbull 1,& 、A. Hazra 1 、Y. Wang 3 、C. Gandara 1 、F. McLeod 1 、EE McDermott 1 、E. Escobedo-Cousin 4 、A. Shah Idil 5 、RG Bailey 4 、S. Tardio 4 、A. Patel 4 、N. Ponon 4 、J. Gausden 4 、D. Walsh 1 、F. Hutchings 3 、M. Kaiser 3,6,7,8 、MO Cunningham 9 、GJ Clowry 1 、FEN LeBeau 1 、TG Constandinou 10 、SN Baker 1 、N. Donaldson 5 、P. Degenaar 4、A. O'Neill 4、AJ Trevelyan 1 和 A. Jackson 1,* 1 纽卡斯尔大学生物科学研究所,纽卡斯尔 NE2 4HH,英国。2 当前地址:阿斯顿大学生命与健康科学学院,伯明翰 B4 7ET,英国。3 纽卡斯尔大学计算学院,纽卡斯尔 NE4 5TG,英国。4 纽卡斯尔大学工程学院,纽卡斯尔 NE1 7RU,英国。5 伦敦大学学院医学物理与生物医学工程系,伦敦 WC1E 6BT,英国。6 NIHR,诺丁汉生物医学研究中心,诺丁汉大学医学院,NG7 2UH,英国。7 彼得·曼斯菲尔德爵士影像中心,诺丁汉大学医学院,NG7 2UH,英国。8 上海交通大学医学院,上海,中国。 9 爱尔兰都柏林圣三一学院医学院,都柏林 2。10 英国帝国理工学院电气与电子工程系,伦敦 SW7 2AZ,英国。 *通讯作者,andrew.jackson@ncl.ac.uk & 这些作者贡献相同。电神经刺激可有效治疗神经系统疾病,但相关的记录伪影通常将其应用限制在开环刺激。然而,通过将并发电记录和光遗传学配对可以实现对大脑活动的实时和连续闭环控制。在这里,我们表明,使用兴奋性视蛋白的闭环光遗传刺激能够精确操纵转基因小鼠和麻醉非人类灵长类动物脑切片中的神经动力学。该方法在静止组织中产生振荡,增强或抑制活动组织中的内源性模式,并调节由惊厥剂 4-氨基吡啶引起的癫痫样爆发。光学刺激相位依赖效应的非线性模型再现了与癫痫发作振荡相关的局部场电位周期调制,癫痫发作相空间轨迹的变异性和熵的系统性变化证明了这一点,这与癫痫发作持续时间和强度的变化相关。我们还表明,可以使用结合发光二极管的皮质内光极来实现闭环光遗传神经刺激。闭环光遗传学方法可能具有转化治疗应用。许多神经系统疾病会导致网络动态改变,特征是脑区内和脑区之间振荡同步性异常低或高 1 。神经调节疗法,例如深部脑刺激 (DBS),通常会提供“开环”电刺激序列,试图破坏病理模式并将脑活动保持在一定功能状态范围内。然而,从控制理论的角度来看,开环方法通常不如包含基于系统实时状态的反馈的闭环控制 2 。因此,如果通过持续的电生理测量控制神经调节疗法,可能会更有效 3,4 ,例如增强有益的振荡或破坏病理性脑状态,如癫痫发作。不幸的是,闭环神经刺激的许多潜在应用受到与电刺激相关的大量伪影的阻碍,尤其是在监测和调节相同的局部神经元群时。这通常会将控制策略限制为简单的决定,即打开或关闭原本连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传递,因此可以通过脑信号实时连续调制光刺激,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但迄今为止,闭环光遗传刺激的实验演示仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们的目标是通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们比较了通过外部光源传递的光刺激和包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装
