(R)................................................2nd................... 2190 25B Smith, Andy (DFL)........................................ 5th.............................. 9249 35A Stephenson, Zack (DFL)................................ 5th.............................. 5513 22B Stier, Terry (R)................................................2nd..........................7-9010† 15A Swedzinski, Chris (R).......................................2nd................................ 5374 54A Tabke, Brad (DFL)............................................. 5th..............................7-9001† 15B Torkelson, Paul (R).........................................2nd................................ 9303 16A Van Binsbergen, Scott (R) ................................2nd..........................7-9010† 38B Vang, Samantha (DFL)........................................ 5th.............................. 3709 52B Virnig, Bianca (DFL)................................................. 5th............................... 4192 7B Warwas, Cal (R) ..............................................2nd..............................7-9010† 32A West, Nolan (R)...............................................2nd................... 4226 5B Wiener, Mike (R)...............................................2nd................... 4293 57B Witte, Jeff (R)......................................................2nd................... 4240 14B Wolgamott, Dan (DFL)................................ 5th................................ 6612 67B Xiong, Jay (DFL)............................................. 5th................... 4201 46B Youakim, Cheryl (DFL).................................... 5th................... 9889 3B Zeleznikar, Natalie (R).............................................2nd................... 2676 40B 特别选举定于 1/28/25.............................................................
处理过时的软件已成为包括开源行业在内的各个行业的紧迫问题。本期为软件工程研究人员提供了机会,有机会适应传统的程序分析技术,以应对重构和现代化挑战。生成AI的进步已经为代码生成,翻译和错误修复以及其他任务开辟了新的途径。公司渴望探索可扩展的解决方案,以进行自动测试,重构和代码生成。本教程旨在提供旧软件现代化的概述,并在AI辅助软件和生成AI的兴起中强调了其意义。它将讨论由整体遗产代码和系统引起的行业挑战,引入建筑范式以现代化的老化软件,并突出需要注意的研究和工程问题。Daniel Thul等人,Xue Han等人,Daiki Kimura等人,Oytun Ulutan等人和Shivali Agarwal等人的研究论文。展示了解决旧软件现代化的重要性。这项工作有可能推动软件工程的创新,使IBM这样的公司能够开发最先进的解决方案。IBM研究在过去一年中在AI,量子计算,半导体和基本研究方面取得了长足的进步。该组织在全球12位实验室中的3,000名研究人员推动了科学领域的界限,并设想了以前似乎不可能的计算和扩展思想中的新可能性。我们的开发路线图将使我们走向这一未来。在过去的一年中,IBM研究在革新企业内的AI能力方面发挥了关键作用。就像AI在短时间内在我们的日常生活中深深地根深蒂固一样,世界上大多数有价值的业务数据仍然锁定在无法访问的格式中,例如PDF和电子表格。在2024年,IBM Research领导了该公司主要AI发行的指控,该公司旨在满足拥有数百万最终用户的企业。亮点之一是在五月的Think上推出了TruxStlab,这是一个开源项目,通过启用新知识和技能的协作添加来简化微调LLM。IBM Research和Red Hat之间的这种合作导致了Red Hat Enterprise Linux AI的功能强大的工具。TenchERTLAB脱颖而出,因为其能够允许全球社区创建和合并更改LLM的能力,而无需从头开始重新培训整个模型。此功能使全球人们更容易找到使用LLMS解决复杂问题的创新方法。此外,IBM Research还使用TerchandLab改善了其开源花岗岩模型,该模型随后于10月发布。在IBM Research的数据和模型工厂中设计和培训了新的花岗岩8B和2B模型。这些企业级模型的执行方式类似于较大的基础模型,但对于诸如抹布,分类,摘要,实体提取和工具使用的企业至关重要的任务成本的一小部分。在12月,IBM发布了其花岗岩3.1型号,每种型号的上下文长度为128K。经过超过12万亿代币的高质量数据培训,这些模型对其数据源具有完全透明的开源。花岗岩3.1 8b指示模型显着提高了其前身的性能改进,并在其同行中占据了拥抱面孔OpenLLM排行榜基准的平均得分之一。此外,IBM发布了一个新的嵌入模型系列,这些模型提供了12种语言的多语言支持,类似于它们的生成性。作为较早的Granite 3.0发射的一部分,Granite Guardian也是开源的。这使开发人员可以通过检查用户提示和LLM的响应来实施安全护栏,以了解社交偏见,仇恨言论,毒性,亵渎,暴力等风险。我们继续使用AI模型来推动界限,尤其是与抹布技术配对时。这种组合使我们能够评估背景相关性,回答相关性和扎根。我们的最新花岗岩3.1型号是8B强大的巨头,可提供无与伦比的风险和损害检测功能。我们还升级了我们的花岗岩时间序列模型,该模型以十倍的利润优于更大的模型。这些进步对于试图根据历史数据准确预测未来事件的企业尤为重要。与传统的LLM不同,我们的花岗岩TTM(TinyTimemixers)系列提供紧凑而高性能的时间序列型号,现在可以在Beta版本的Watsonx.ai的时间表预测API和SDK的Beta版本中提供。这个新的8B代码模型还具有对代理功能的支持。我们相信,我们的开源社区在这些模型中看到了价值,迄今为止,拥抱面孔的下载量超过500万。我们的下一代代码助理,由花岗岩代码模型提供支持,为C,C ++,GO,Java和Python等语言提供通用编码帮助。除了我们的内部软件开发管道改进外,在某些情况下增强了90%的增长,Granite代码模型现在还通过Instana,Watsonx Struckestrate和Maximo等产品中的产品,业务和行业4.0自动化为新的用例,为新的用例提供了动力。我们的花岗岩型号现在可以在包括Ollama,LM Studio,AWS,Nvidia,Google Vertex,Samsung等的各种平台上使用。建立在花岗岩3系的成功基础上,我们正在努力实现一个未来,AI代理可以通过称为Bee的开源框架可以轻松地解决业务需求。这使代理商可以快速开发业务应用程序。与美国国家航空航天局合作开发的气候和天气模式,用于跟踪重大的环境问题,例如西班牙的洪水破坏,亚马逊森林砍伐以及美国城市的热岛。我们很自豪地庆祝由IBM和META共同创立的AI联盟一年,旨在推动开放和负责的AI开发。该计划已发展为23个国家 /地区的140名成员,为负责任的模型,AI硬件和安全计划组成工作组。随着对AI的需求的增长,很明显,传统的CPU和GPU正在努力与这些模型的复杂性保持同步。我们需要创建从一开始设计的新设备,以有效地处理AI需求。IBM在半导体和基础设施中揭示了2024年在半导体和基础设施研究团队中发生的一些重大突破,重点是规模。8月,IBM揭开了Spyre,这是一种新的AI ACELERATOR芯片,用于子孙后代的Z和Power Systems,灵感来自AIU原型设计和Telum Chip的工作。这一突破是在意识到AI工作流程需要极低的AI推断后的突破。spyre具有32个单独的加速器芯,并包含使用5 nm节点工艺技术生产的14英里电线连接的256亿晶体管。芯片设计为聚集在一起,为单个IBM Z系统添加了更多的加速器核。与Spyre一起,企业可以在Z上部署尖端的AI软件,同时受益于IBM Z的安全性和可靠性。IBMResearch也一直在探索更有效地服务模型的方法。去年,该团队推出了其脑启发的AIU Northpole芯片,该芯片将记忆和加工单元共同取消,拆除了Von Neumann瓶颈。今年,在Northpole的硬件研究人员与AI研究人员之间的合作中,该团队使用Northpole用于生成模型创建了一个新的研究系统。该团队的潜伏期低于1毫秒的延迟,比下一个节能的GPU快了近47倍,而能量却减少了近73倍。另一个重大突破是在共包装光学领域的。此设备可以在硅芯片边缘的高密度光纤束,从而可以通过聚合物纤维进行直接通信。IBM Research Semiconductors部门中的一个团队生产了世界上第一个成功的聚合物光学波导,将光学的带宽带到了芯片边缘。该团队证明了光通道50微米的音高的可行性,这比以前的设计尺寸减少了80%。IBM研究人员在芯片设计和制造方面取得了重大突破。 他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。 这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。 此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。 他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。 这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。 团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。 IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。 这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。IBM研究人员在芯片设计和制造方面取得了重大突破。他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。例如,IBM Spyre已经可用,将是下一代IBM Power 11的组成部分。AIU Northpole和共包装的光学设备在加拿大Bromont的IBM设施进行了测试和硬化。IBM量子通过整合量子和经典系统来解决复杂问题,从而加速其对混合计算的愿景。今年,该公司在推进其可扩展故障量量子计算机的路线图方面取得了长足的进步。在量子开发人员会议上,IBM展示了其进度,包括从高达5,000台门的运营中获得了苍鹭量子电路的精确结果。揭幕了一种新的,改进的苍鹭芯片,拥有156吨和出色的性能,错误率下降到8x10^-4。此外,IBM在创新方面取得了重大进步,包括使用Crossbill和L-COUPLER的M耦合器与火烈鸟的开发。这些突破使量子计算机更接近可扩展性和容忍性。此外,Qiskit V1.0是作为稳定版本发布的,巩固了其作为世界上最出色的量子软件开发套件的位置。此版本提供了改进的稳定性,并为Qiskit的60万开发人员提供了更长的支持周期。此外,还编译了一个名为Benchpress的基准集合,以准确演示Qiskit的性能。在针对其他量子软件(包括TKET,BQSKIT和CIRQ)的基准测试测试中,Qiskit在性能方面出现了明确的赢家,完成了比任何其他量子SDK的测试。IBM对创新的承诺可以追溯到80年前的成立。平均而言,在移动电路时,Qiskit的速度比TKET少54%。我们的软件工具集<div> Qiskit已经超越了性能SDK,以支持运行实用程序尺度量子工作负载的整个过程。这包括编写代码,后处理结果以及两者之间的所有内容。该工具集现在涵盖执行大规模工作负载所需的开源SDK和软件中间件。Qiskit Transpiler服务,更新的Qiskit Runtime Service,QISKIT AI Code Assistan Service,Qiskit Serverless和Qiskit功能等新功能使用户能够在更高的抽象级别访问高性能的量子硬件和软件。Qiskit功能,特别是将量子计算带给更广泛的受众群体的潜力。这是一项编程服务,允许用户在导入功能目录并传递其API令牌后,在IBM量子处理器和IBM Cloud上运行工作负载。该服务应用错误抑制和缓解措施,然后返回结果。通过结合软件和硬件突破,我们制作了以量子为中心的超级计算的第一个真实演示。我们与Riken合作发表了一篇论文,将此范式定义为超级计算,可以优化跨量子计算机和高级经典计算簇的工作。在我们的实验中,我们使用了多达6,400个fugaku超级计算机的节点,以帮助IBM Heron QPU模拟分子氮和铁硫簇。我们有信心,如果我们与古典HPC社区合作,我们可以在未来两年内实现量子优势。由于以量子为中心的超级计算出现,我们设想在一些最难的计算任务中协助经典计算机(反之亦然)的量子计算机。当前的加密方法取决于计算机将大数字分为主要因素的困难,随着数字的增长,这变得越来越具有挑战性。计算机科学家认为,研究人员已经证明,一台复杂的量子计算机可以通过应用Shor的算法在几个小时内破解RSA-2048加密,这对于计算机对于能够将大于2048位的数字的计算值至关重要。为了解决这一问题,IBM Research开发了三种新的数字签名算法-ML-KEM,ML-DSA和SLH-DSA,它们已被NIST接受竞争。为了确保平稳过渡到后量子后时代,IBM量子安全团队创建了一个用于网络弹性的路线图。这涉及了解组织的加密格局,确定需要更换的领域以及分析依赖性。企业可以使用诸如IBM量子安全探险家之类的工具来发现加密文物,生成密码材料清单(CBOM)并分析相关漏洞。IBM还为几项国家级计划做出了贡献,包括日本的Rapidus项目,该计划旨在使用芯片和高级包装以及AI驱动的Fab Automation开发2 NM芯片。此外,IBM与几个国家合作,以帮助他们确保其计算未来。在瑞士,IBM与Phoenix Technologies合作,在其位置安装了端到端的云AI超级计算机。该系统能够从数十个gpus扩展到数十个GPU,并具有IBM突破,例如基于IBM存储量表的灵活的基于RDMA的网络和高性能存储系统。使用OpenShift容器平台和OpenShift AI构建了云本地AI平台,可根据需要提供对WATSONX.AI的访问。IBM设置为全球主权AI Cloud Solutions的动力,从Kvant AI开始,该解决方案旨在提供特定于行业的AI应用程序。该公司还将通过投资其Bromont设施来加强与加拿大和魁北克政府的合作伙伴关系,从而巩固北美芯片供应链的未来。此外,IBM半导体研究导致了纳米片技术和2 nm节点等突破,并且新的NSTC EUV加速器将位于Albany Nanotech综合体。IBM还通过开设其在欧洲的第一个量子数据中心并与Riken合作安装IBM量子系统两个,从而在全球扩展量子计算。该公司还将IBM系统带到韩国和法国,同时与西班牙,沙特阿拉伯和肯尼亚等政府合作开发特定语言的AI模型并监视造林工作。托马斯·沃森(Thomas Watson)认为,从制表机,尺度和打孔时钟的早期,投资研究的价值。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。 这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM研究:八十年前的科学突破的遗产,哥伦比亚大学教授华莱士·埃克特(Wallace Eckert)领导了沃森科学计算实验室IBM Research成为前身的建立。在1956年,IBM建立了一个专门的研究部门,到本世纪末,他们需要更多的空间来探索迅速发展的计算世界。我们通过在我们的思想实验室中构建创新的解决方案来启动我们的旅程,以塑造计算的未来。在这里,研究人员与来自不同背景的专业人员合作,以解决看似不可能的项目。我们的内部工具(如花岗岩模型)被用来增强我们的产品,而代理框架为Qiskit供电代理。最近的合作导致了加速的发现,回应了托马斯·沃森(Thomas Watson)80年前的开拓精神。我们应对未来80年的挑战时,下一章的创新就在未来。
3 TSMC,Hsinchu,Taiwan *同样信誉的作者(ECAS)增强视频质量对于在包括手机,电视和监视器在内的智能设备上获得了增强的用户体验至关重要。实用的硬件设计应在与带宽,区域和能源预算相关的严格限制下提供最小资源的高性能。在图像处理任务中,深入学习算法的广泛用法(包括超分辨率(SR)和降噪(NR))进一步强调了能量效率硬件解决方案的必要性。因此,新兴的关键要求是在实时和高分辨率方案中部署这些算法。但是,实现这一目标提出了几个挑战,如图20.1.1:1)高分辨率网络推断大大增加了由于其计算复杂性,低稀疏性和高精度要求而引起的功耗; 2)频繁的高精度数据交易到外部内存会导致与带宽使用相关的大量功率使用; 3)有效和灵活的机制对于支持各种网络结构和操作至关重要。域特异性加速器提供了一种有希望的解决方案来处理计算需求。总的来说,这些创新使NVE能够在0.46V时达到23.2吨/w的端到端能量效率,而面积的效率为12.0吨/mm 2的面积为1.0V。图20.1.2显示了整体体系结构,包括卷积(Conv)核心,计算机视觉(CV)核心和直接内存访问(DMA)模块。图20.1.3概述了DCIM核心设计和工作流。在这项工作中,提出了在3NM技术中制造的12B位数基于CIM的神经视觉增强引擎(NVE),其特征是:1)无重量的无重量数字计算机(DCIM)发动机,其重量切换率降低,以增强计算能力的功能; 2)卷积元素(CE)融合建立了工作负载平衡的管道架构,从而减少了外部内存访问和功耗; 3)自适应数据控制和带状优化机制支持DCIM中的卷积和转置卷积,并改善了利用率,并且对有效的数据遍历进行了优化的执行流。Conv Core包含11个阶段的管道CE,用于存储中间数据的功能映射存储器,CE融合接口和融合控制。a fine编译器分区将计算图分隔为时区域的循环和太空划分的条纹,以优化吞吐量和内存访问,然后在命令描述符中编码重量和设置。DMA将描述符解码并从DRAM或TCM中加载输入特征映射,以基于线的栅格扫描顺序为核心。在管道流中,每个CE从特征映射存储器和前面的管道阶段收集数据,并将其分配到DCIM宏。宏计算每个周期中的8组点产量,其中每组涉及72对12B元素。权重局部存储在18组行中,其特定集由行选择器选择。在实验结果中证明了使用更频繁使用的8b的12B激活和权重的必要性。在拟议的行开关更高的精度有助于产生更平滑的边缘和最小化超分辨率任务中的噪声。同样,在降低降噪任务中,更高的精度会导致较少的流动性,并产生更重的图像。DCIM的高效率很大程度上是由于记忆和逻辑之间的数据移动降低,这对于最大程度地减少了频繁的重量重音至关重要。先前的工作[1]引入了带有乒乓重量更新的2行DCIM设计,但除了dcim宏中的乒乓球重量存储外,它会引起重量重加载和其他SRAM的电源和面积。利用像素级网络中的权重较少,采用了18行DCIM来存储所有权重并消除重新加载。与[1]中提出的方法相比,这种方法分别将面积和功率降低了31%和28%。影响DCIM效率的另一个因素是重量排开关的频率,这是计算不同权重集合时发生的能量耗尽操作。延长行开关周期可以减少能源消耗,但它还需要在输入和输出缓冲区中存储更多像素,从而导致较大的面积在开销中。
3瓦济港科学技术大学,武汉,中国的癫痫发作检测处理器已提议使用机器学习来检测患者的癫痫发作,以提高或刺激目的[1-4]。现有设计可以实现高精度,当可用于培训的大量癫痫发作数据。然而,与收集非赛式数据的收集不同,癫痫发作数据的收集要求患者需要进行时间耗时且昂贵的住院治疗,这在实践中很难。为了解决这个问题,[5]提出了一个零射击癫痫发作检测处理器,在没有患者进行重新训练的情况下达到了相对较高的精度(此处的零照片意味着零癫痫发作数据[5])。取而代之的是,只需要从患者的2分钟的非Seizure数据来校准用在公共癫痫发作数据集中预先训练的神经网络(NN)提取的聚类特征。尽管这解决了上述问题,但该设计的准确性(敏感性为90.3%&特定的93.6%)仍然有限用于实际使用,并且能源消耗很大,用于可穿戴的EEG监测设备,例如其他使用NN的癫痫发作检测处理器,如图在这项工作中,我们提出了一个零射的癫痫发作检测处理器,不需要患者的癫痫发作数据以进行[5]中的癫痫发作,但准确性和能量效率更高。图33.1.1显示了所提出的癫痫发作检测处理器的整体体系结构。33.1.2。提取了四个手动特征,包括三个EEG光谱带功率和线长度。它具有两个主要特征:1)杂交驱动的自适应加工体系结构,其片上学习不需要患者的癫痫发作数据即可获得超低的能耗和高精度,以及2)一种基于学习的自适应渠道选择技术,以进一步降低能源消耗,同时保持高精度。It mainly consists of a multi-feature extraction engine (MFEE), a hybrid-feature-driven adaptive processing engine (HAPE), a reconfigurable on-chip learning engine (ROLE), a learning-based channel selection module (LCSM), a data buffer for storing the input data from multiple EEG channels, and a data interface for parameter loading including the NN instructions and weights.一些最新的癫痫发作检测处理器采用基于手动特征提取的分类,以较低的复杂性和更强大的患者性能,而其他人则使用基于端到端的NN基于NN的分类,以提高精确度,以较少的功能工程工作。在这项工作中,我们提出了基于片上学习和自适应处理的基于混合特征的癫痫发作检测处理,以利用两者的优势,如图NN特征提取由深度转换组成,并具有扩张的Cons和Pointwisce Conv。手动功能和NN功能首先通过两个完全连接(FC)层(即FC1_1和FC1_2)投影。33.1.2),然后融合为混合特征,以馈入FC2_2进行分类。对于基于片上学习的混合功能,不需要患者的癫痫发作数据。与[5]中一样,NN使用常用的公共数据集(CHB-MIT)进行预训练。对于片上学习,来自患者的1分钟的非Seizure数据和来自公共数据集的1分钟癫痫发作数据被混合为学习数据集。为了降低能量,仅重新训练了杂交分类层和投影层。图33.1.2显示了包含两个阶段的片上学习处理流。基于混合功能NN,我们提出了一个混合驱动的自适应处理体系结构。添加了另一个FC层(FC2_1)以对手动功能进行分类。最初,仅激活手动功能分类,而混合特征分类和NN特征提取被停用。如果Fc2_1的分类结果是非seizure,则分类终止。否则,NN特征提取和混合特征分类被激活以进行进一步的分类。这种显着的同时降低了能源消耗,同时保持高精度,因为与癫痫发作相比,非赛式事件通常是主要的。为了减少由于手动特征分类的分类误差而导致的准确性损失,在培训期间将实现偏差,以将输入分类为癫痫发作以进行进一步分类。图33.1.3用混合驱动的自适应处理流量显示了HAPE和MFEE的硬件体系结构。HAPE合并了16个用于NN计算的多精制MAC单位。在计算过程中,激活数据根据其值将激活数据动态分为4B或8B,对于4B数据,高4B乘法器被禁用以节能。MFEE将4个功能计算器通过16通道脑电图通过时间多路复用重复使用。在混合驱动的自适应处理控制器的控制下,NN计算是自适应的
DD-214 信息表 第 1 块:姓名。来自入伍合同或任命令的姓名,并检查官方记录以了解可能的姓名变更。如果姓名已发生变更,请在块 18 中列出记录中的其他姓名。 第 2 块:部门、组成和科属。部门条目为“ARMY”。组成部门的授权条目为“RA”、“ARNGUS”或“USAR”。 第 3 块:社会保障号码。通过检查初始入伍合同和/或任命申请来验证准确性。如果士兵拥有多个社会保障号码,请在块 18 中列出记录中的其他社会保障号码。 第 4 块:等级、级别或军衔。验证退役时现役等级或军衔和薪级是否准确。 第 5 块:出生日期。通过检查原始入伍合同和/或任命申请来验证数据的准确性。 第 6 块:预备役义务终止日期这是士兵首次入伍或加入武装部队时承担的法定 MSO 的完成日期。法律 (10 USC 651) 要求 1984 年 6 月 1 日或之后入伍或被任命的没有服过兵役的士兵服役 8 年。MSO 从首次入伍或加入 RA、ARNG 或 USAR 之日起开始。对于退伍、开除、脱离陆军监护或从陆军名册中除名的士兵,或 MSO 已过期的士兵,输入“0000 00 00”。离退伍时 MSO 终止日期 90 天内的士兵被视为已完成 MSO。第 7 组:进入现役地点和记录住所。第 7a 组:进入现役地点。士兵的初始现役命令是此数据的来源文件。输入士兵进入现役的城市和州。军官根据其最初的现役命令进入现役。通常,这是参加基本军官领导课程或其他临时值班地点的临时值班地点(例如,支持预备役军官训练团 (ROTC) 夏令营或金条招募任务)。 (c) 美国陆军军官学校毕业生在纽约州西点的入伍支队进入现役。 (d) 之前在现役期间改变过身份或组成部门的士兵,改变的驻地将成为此服役期间进入现役的地点。 (例如,一名士兵在阿拉巴马州拉克堡退役,继续担任准尉。完成准尉现役后,他的 DD 表格 214 会将阿拉巴马州拉克堡列为其此服役期的入伍地。)(e) 陆军国民警卫队和美国陆军后备队士兵,此服役期的现役命令将列出士兵入伍的地点(例如,家庭住址、驻地、动员站、陆军基地等)。通常,此位置是命令上列出的第一个“报告给”行。区块 7b:记录住所。士兵的初始任命文件是此数据或 HRC 批准的任何更正的来源。列出士兵记录住所的街道地址、城市、州和邮政编码。对于 RC 士兵,现役命令列出了士兵的记录住所。记录住所是士兵被委任、任命、入伍或被命令服现役时记录的记录住所。除非现役中断至少 1 整天,或 HRC 确定事实不正确,否则无法更改。更改记录住所的请求可以发送至 usarmy.knox.hrc.mbx.tagd-emilpo-helpdesk@mail.mil。记录住所不一定与所得税定义的法定住所相同。法定住所可能会在士兵的职业生涯中发生变化。区块 8:最后值班任务和陆军指挥部,以及分驻地:北卡罗来纳州布拉格堡。区块 8a:最后值班任务和陆军指挥部。现任单位的 UIC。区块 8b:分驻地。北卡罗来纳州布拉格堡区块 9:调往的指挥部。如果您正在退伍,则此区块中将显示“N/A”。如果您正在退出现役(REFRAD),则此区块将显示:USAR CON GP (REINF) 1600 SPEARHEAD DIVISION AVE, FT KNOX, KY 40122。如果您正在退现役并签署了预备役/国民警卫队合同,则预备役/警卫队单位的名称和完整邮寄地址将出现在此区块中。区块 10:军人团体人寿保险金额。输入士兵的军人团体人寿保险(SGLI)金额。如果士兵拒绝 SGLI 保险,请在“无”框中填写“X”。SGLI 在士兵退役后 120 天内仍然有效,且士兵无需承担任何费用。调动到的指挥部。如果您即将退伍,此栏将显示“N/A”。如果您即将退出现役 (REFRAD),此栏将显示:USAR CON GP (REINF) 1600 SPEARHEAD DIVISION AVE, FT KNOX, KY 40122。如果您即将退现役并签署了预备役/国民警卫队合同,预备役/警卫队单位的名称和完整邮寄地址将出现在此栏中。第 10 栏:军人团体人寿保险金额。输入士兵的军人团体人寿保险 (SGLI) 金额。如果士兵拒绝 SGLI 保险,请在“无”栏中填写“X”。SGLI 在士兵退役后 120 天内有效,士兵无需支付任何费用。调动到的指挥部。如果您即将退伍,此栏将显示“N/A”。如果您即将退出现役 (REFRAD),此栏将显示:USAR CON GP (REINF) 1600 SPEARHEAD DIVISION AVE, FT KNOX, KY 40122。如果您即将退现役并签署了预备役/国民警卫队合同,预备役/警卫队单位的名称和完整邮寄地址将出现在此栏中。第 10 栏:军人团体人寿保险金额。输入士兵的军人团体人寿保险 (SGLI) 金额。如果士兵拒绝 SGLI 保险,请在“无”栏中填写“X”。SGLI 在士兵退役后 120 天内有效,士兵无需支付任何费用。
