90nm 系列包括低功耗 CS100A-LL、高性能 CS100 和通用 CS100A-G,让客户能够灵活地选择合适的技术来区分其产品。CS100 的 HV(高 Vth 晶体管)比 CS100A-G 具有更高的性能和更低的功耗。I/O 范围为 1.8V 至 3.3V,SRAM 存储器单元尺寸小于 1.0µm 2 。
在各种 ADC 架构中,FLASH ADC 被证明是高性能 ADC。所提出的 ADC 由基于多路复用器的编码器、开环比较器和电阻梯形网络组成。所提出的 ADC 采用 90nm CMOS 技术进行模拟。所提出的 ADC 的主要优点是静态功耗低。这是通过将基于多路复用器的编码器集成到 Flash ADC 中实现的。所提出的 ADC 的功耗为 26.65µw,输入电压为 1V,频率为 100MHz。设计的 Flash ADC 可用于高速应用。
除了 EDA 工具和 IP,大学还需要访问库和工艺设计套件来实现完整的 IC 设计流程。Synopsys 开发了 90nm 和 32/28nm 版本的通用库和可互操作工艺设计套件 (iPDK),以帮助教师教授现代微电子设计技术,并为学生提供真实的设计体验,为他们进入行业做好准备。通用库 Synopsys 90nm 和 32/28nm 通用库专为教学而设计,可帮助学生掌握低功耗等高级设计方法。它们包括示例设计,以及对 OpenSPARC、PowerPC® 405 和 Cortex M0™ 处理器的支持。内容包括:
印度安得拉邦蒂鲁帕蒂 Sri Venkateswara 工程学院电子与计算机系摘要:运算放大器电路用于计算、仪器仪表和其他应用。以前用于仪器仪表的精密运算放大器如今被用于工业和汽车应用。因此,总是需要更高精度的运算放大器。它应该在很宽的温度范围内工作。如今,由于行业趋势是应用标准工艺技术在同一芯片上实现模拟电路和数字电路,互补金属氧化物半导体 (CMOS) 技术已经取代双极技术成为混合信号系统中模拟电路设计的主导技术。两级运算放大器是最常用的运算放大器架构之一。本文介绍了一种基于 CMOS 的运算放大器,其输入取决于其偏置电流,偏置电流为 20µA,采用 180nm 和 90nm 技术设计。在亚阈值区域,由于 MOS 晶体管的独特行为,设计人员不仅可以在低电压下工作,还可以在低输入偏置电流下工作。大多数 CMOS 运算放大器都是为特定的片上应用而设计的,只需要驱动几 pf 的电容负载。在本提案中,介绍了两级全差分 CMOS 运算放大器的设计,并针对各种参数在 180nm 和 90nm 技术中进行了模拟。模拟将使用 Cadence Virtuoso Tool 进行。
摘要:在电子处理系统中,二进制数的加法是一项基本运算。通过分析并与其他传统加法器进行比较,展示了一位低功耗混合全加器的性能改进。与其他传统全加器电路相比,1 位低功耗混合全加器被认为是提高电路速度的好方法。在该分析论文中,使用 EDA 工具实现了一位低功耗混合全加器,并使用通用 90nm CMOS 技术在 5 伏电压下进行了仿真分析,并在各种电压下与其他传统全加器进行了比较。为了将 1 位低功耗混合全加器与其他传统加法器在各种参数(例如静态和动态功耗、延迟和 pdp(功率延迟积))下的比较,考虑了 1 位低功耗混合全加器最适合各种低功耗应用。
摘要 本研究提出了一种能够有效、全面评估多种技术节点的CMOS工艺的功率-性能-面积(PPA)特性的方法。根据国际半导体技术路线图(ITRS),我们采用从180nm半节距节点到28nm节点的全尺寸缩小方法,设计并实现了一系列基准环形振荡器(RO)电路。同时,我们对基于六种低泄漏(LL)工艺:180nm、130nm、90nm、65nm、40nm和28nm工艺的RO电路进行了仿真、分析和版图设计。通过纵向分析和比较这六种工艺的PPA特性,可以更好地了解工艺质量,并得出一些可靠的结论来指导设计指标。所提出的方法和基准电路可以很好地扩展到未来的先进技术节点。关键词:集成电路(IC)、PPA、RO电路、CMOS工艺、PVT 分类:集成电路(存储器、逻辑、模拟、RF、传感器)
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
摘要:提出了一种由级联微环谐振器和AWG组成的高分辨率集成光谱仪,实现了0.42nm的高分辨率和90nm的带宽,在生化传感应用方面有很高的潜力。OCIS代码:(300.6190) 光谱仪;(130.3120) 集成光学器件;(130.6010) 传感器。引言当前光谱仪领域最重要的研究之一是基于平面集成光波导技术的光谱仪,其结构多种多样,例如阵列波导光栅(AWG)[1]、中阶梯光栅[2]、微环谐振器(MRR)[3]和波导傅里叶变换(FT)光谱仪[4-5]。其中,对AWG和EDG等分光式传统光谱仪的研究已经持续了很长时间。在我们之前的工作中,我们提出并演示了一种基于级联 AWG 和可调微环谐振器阵列的高分辨率、宽带宽集成光谱仪 [4]。然而,每个通道的微环都需要调谐,这非常耗时。在本文中,我们提出了一种将热调谐 MRR 与 AWG 级联的结构来制作高分辨率光谱仪,从而减少了微环阵列调谐所花费的时间。
