摘要 — 我们报告了一项合作项目的结果,该项目研究了在飞机制造中部署人形机器人解决方案,用于轮式或轨道式机器人平台无法进入的一些装配操作。多接触规划和控制、双足行走、嵌入式 SLAM、全身多感官任务空间优化控制以及接触检测和安全方面的最新发展表明,考虑到这种大规模制造现场的特定要求,人形机器人可能是自动化的可行解决方案。主要挑战是将这些科学和技术进步集成到两个现有的人形平台中:位置控制的 HRP-4 和扭矩控制的 TORO。在空客圣纳泽尔工厂的 1:1 比例的 A350 机身前部模型内的支架组装操作中展示了这种集成工作。我们介绍并讨论了该项目取得的主要成果,并为未来的工作提供了建议。
航空电子系统在飞机成本中所占的比例越来越大:民用飞机占 35% 至 40%,军用飞机占 50% 以上。这些系统负责各种应用,例如导航、制导、稳定性、燃料管理、空中/地面通信、乘客娱乐等。它们的复杂性不断增加(需要集成的功能越来越多,飞机成为真正的信息系统)。与此同时,通信和信息管理技术也在不断发展,新的航空电子解决方案也不断涌现。现代民用(B787、A350)和军用(阵风、鹰狮、A400M 等)航空电子系统的实施飞机倾向于依赖 IMA(集成模块化航空电子)架构,而不是更经典的联合架构。在联合架构中,每个系统都有私有的航空电子资源,而在 IMA 架构中,航空电子资源可以由多个系统共享。通常的航空电子资源类型
摘要 机翼结构的刚度方向已成为飞机设计优化的一部分。A350 XWB 和波音 787 等飞机主要由此类复合材料组成,其刚度方向可以优化。为了进行这种刚度优化,这项工作的目的是修改和优化线性应力-应变关系。因此,胡克定律被多线性公式取代,以分析机翼结构上的任何非线性弹性结构技术。用于研究非线性行为的机翼结构是从中程和远程飞机配置中推导出来的。这些机翼采用扩展梁法进行分析,并与 VLM 解决方案相结合以计算气动弹性载荷。所提出的梁法能够分析任何多线性机翼结构技术。递减的结构行为显示出减少弯矩的良好潜力,而弯矩是结构重量的主要驱动因素之一。
图片列表 图 1 飞行阶段描述 ................................................................................................................................ 11 图 2 B707 驾驶舱 ................................................................................................................................ 12 图 3 A350 驾驶舱 ................................................................................................................................ 12 图 4 空客飞行员黄金法则 ...................................................................................................................... 13 图 5 达美航空 OCC ................................................................................................................................ 15 图 6 A320 起飞前检查清单 ...................................................................................................................... 16 图 7:ACROSS 项目中的姿势、眼神注视、EEG 分析 ............................................................................................. 20 图 8:ATM 领域中自适应自动化的示例 ............................................................................................................. 21 图 9:FLYSAFE 项目中向飞行员展示的天气雷达 + 上传的临近预报和预报 ............................................................................................................................................. 22 图 10:NINA 项目中 ATM 领域中 AI 生成的决策支持示例 ............................................................................................................................................. 23 图 11:概念与用例生成及选取流程 ...................................................................................................... 26 图 12 AI 潜能学习原理 ................................................................................................................ 34 图 13:UC 1 AI 概念总结 ................................................................................................................ 35 图 14:UC 2 AI 概念总结 ................................................................................................................ 37
摘要 — 我们报告了一项合作项目的结果,该项目研究了在飞机制造中部署人形机器人解决方案,用于轮式或轨道式机器人平台无法进入的一些装配操作。多接触规划和控制、双足行走、嵌入式 SLAM、全身多感官任务空间优化控制以及接触检测和安全方面的最新发展表明,考虑到这种大规模制造场所的特定要求,人形机器人可能是自动化的可行解决方案。主要挑战是将这些科学和技术进步集成到两个现有的人形平台中:位置控制的 HRP-4 和扭矩控制的 TORO。在空客圣纳泽尔工厂的 1:1 比例的 A350 机身前部模型内的支架组装操作中展示了这种集成工作。我们介绍并讨论了该项目取得的主要成果,并为未来的工作提供了建议。
与当今最好的 CFM56 发动机相比,它具有世界一流的可靠性和无与伦比的性能,油耗降低了 15%,同时保持了相同水平的调度可靠性和生命周期维护成本。LEAP 发动机的调度可靠性高达 99.98%,这意味着飞行时间更长,维护时间更少。此外,它采用 3D 编织技术,即其风扇叶片由 3D 编织 RTM(树脂传递模塑)碳纤维复合材料制成,这是 CFM 的业内首创。这种技术生产的风扇叶片不仅重量轻,而且非常耐用,每个叶片都足以支撑空客 A350 或波音 787 等宽体飞机的重量。它是第一款使用增材制造来“制造”复杂、全致密但更轻的发动机。它的燃油喷嘴比以前的型号轻 25%,耐用性是传统制造的部件的五倍。 LEAP 碎屑抑制系统提供最佳的侵蚀保护,防止沙子、污垢、
随着人们适应临时居家隔离和保持社交距离的措施,新冠肺炎疫情可能会扩大对自动驾驶汽车所能提供的服务的需求,包括无人机送货和无人驾驶空中出租车。与此同时,尽管新冠肺炎加速了空客 A380 等远程客机的退役,但一旦国际需求再次上升,燃油效率更高的飞机(如 A350 和波音 787)将推动超长途国际旅行的复苏。在未来 15 到 20 年内,传统飞机和新兴飞机将并肩飞行,增加空域的拥堵和复杂性。这方面的例子包括低空空域出现无人驾驶飞行器 (UAV) 以及新用户进入高空空域。我们必须努力整合和促进我们所有空域的运营,以确保安全高效的空中交通运营。政府、监管机构、空中导航服务提供商和行业需要合作和创新,以支持恢复、维护安全并确保弹性和安全性。
摘要:由于使用碳复合材料作为主要制造部件,航空航天工业发生了巨大变化。航空航天工业现在使用超过 50% 的碳复合材料作为飞机的主要设计产品。在飞机设计中使用碳纤维复合材料可以最大限度地减轻飞机重量和燃料消耗。可负担性是航空航天工业的一个非常重要的方面;使用碳复合材料可以更容易地制造民用、货运和军用飞机,在碳纤维的帮助下,可以使飞机更轻。航空航天业最近推出了两架飞机,波音 787 梦想飞机和空客 A350 XWB,其中超过 50% 至 53% 的碳纤维被用作主要设计产品。通过使用碳纤维,飞机的整体效率得到了提高。本文旨在回顾碳纤维的应用,并发现碳复合材料在航空航天工业中的应用是有效的。
以下飞机的评级 • 空客 A310 系列 • 空客 A318/A319/A320/A321 系列 • 空客 A330 系列 • 空客 A340 系列 • 空客 A350 系列 • 波音 B757/B767 系列 • 波音 B737 300/400/500 系列 • 波音 B737 600/700/800/900 系列,包括 BBJ 700 (BBJ1)/800 (BBJ2)/900 (BBJ3) • 波音 B777 系列 • 波音 B787 系列 • 波音 B747-400/B747-8i • 波音 MD-80 系列 • 庞巴迪 BD-700(环球快车/环球快车 XRS/环球 5000/环球 5500/环球 6000/环球 6500/环球 7500)系列 •庞巴迪 BD-100 系列(CL 300/ 350) • 庞巴迪 CL-600-2B16 系列(CL 604/ 605/ 650) • 湾流 II 和 III 系列、GIV(G650/650ER、G450、GV 系列、G550、G650、GVI、GVII(G500/ G600) • 航空电子设备、仪表和自动驾驶仪安装 • 电气系统安装 • 皮拉图斯 PC-12 系列 • 皮拉图斯 PC-24 系列
摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________
