摘要:现代电网因工业化而面临负荷需求的快速增长,导致环境不受监管,可再生能源的采用日益增加,这带来了技术挑战,特别是在稳定性方面。氢转换技术通过可再生能源彻底改变了清洁电力存储,太阳能氢现在可用于自主太阳能系统。太阳能光伏系统的效率与使用数字电子最大峰值功率跟踪(MPPT)技术密切相关。物联网(IoT)对于光伏系统的性能监控和实时控制至关重要,可增强对实时运行参数的理解。用于分布式太阳能设备的物联网和无线传感器网络以及联合建筑设计对于发展光伏建筑行业至关重要。本文提出的监控系统为太阳能光伏(PV)系统的智能远程实时监控提供了一种潜在有效的解决方案。它表现出很高的准确度,达到 98.49%,并可以在 52.34 秒的时间内将图形表示传输到智能手机应用程序。因此,电池的寿命延长了,能耗降低了,并且物联网 (IoT) 内部实时应用程序的服务质量 (QoS) 得到了增强。
摘要阿尔茨海默氏病(AD)是一种退化性,无法治愈的神经系统疾病,逐渐损害了认知能力。广告影响着全球数百万的人。活检方法是识别AD的最可靠方法,但它有机会造成无法弥补的伤害。活检有许多非侵入性替代品,可用于诊断AD而没有过高的风险。这些替代方案之一包括计算机辅助的诊断系统,该系统能够鉴定出脑部障碍疾病/疾病。本文使用具有四个不同类别的大脑的磁共振成像扫描来创建一个模型来检测AD。作为研究数据的基础,开放源OASIS数据集被分为80%的培训集和20%的测试集。数据集由中等广告,轻度AD,非常轻度的AD和非AD扫描组成。使用五种不同的卷积神经网络方法进行分类。Densenet-121,Resnet-50,Resnet-18和Alexnet方法的检测精度分别为90.5%,95.1%,88.4%和70.5%。有效网络-7方法未能识别许多AD的情况。
一、前言 本《合作社战略规划流程手册》由全国合作社联合会 (NATCCO) 委托巴彦社会企业家精神和人力资源开发学院编写,旨在建立一个知识资源中心,使联合会的成员和非成员合作社都能从中受益。 本手册主要改编自 Eduardo A. Morató, Jr. 博士的三本出版物(《战略规划与管理》,2006 年、《战略规划手册》,2019 年、《教育部战略规划与管理》,2013 年)。 本手册可作为任何合作社的指南,合作社可利用本手册开展战略规划流程,采用顺序、合理和分析战略方法,该方法以对环境的良好外部评估以及对战略制定合作社的全面内部评估所提供的证据为基础。手册通过明确阐述愿景和使命声明、目标、关键结果领域和绩效指标 (VMOKRAPI) 中阐明的最终目标,开始制定战略。接下来是外部评估 (EA) 和内部评估 (IA),以确定制定战略的组织。最后,该过程以确定最佳策略 (S)、计划 (P)、活动 (A) 和任务 (T) 来完成 VMOKRAPI 并利用执行制定的策略 (SPATRES) 所需的资源 (RES) 结束。因此,许多学习莫拉托博士开发的这种战略制定模型的人使用的口号是 VMOKRAPI-SPATRES。该手册还可以作为在高等和研究生学术水平上教授战略规划和管理的学习材料,但也可供合作社聘请的为其进行战略规划的顾问和协调员使用。本手册旨在指导学习者逐步完成学习过程,其中包括由 NATTCO 首席运营官 Raul Calayan 以及 Bayan Academy 和 Bayan EDGE(企业开发者、种植者和进化者)的案例作者编写的案例。除合作社外,其他组织也可以采用和改编本手册,因为战略规划过程相同,只是案例不同。
桑基图是: A) 工艺过程中质量和热量交换的示意图 B) 工艺装置示意图 C) 生产 1 公斤产品的成本图形显示 D) 以流程图显示工艺过程的质量和/或能量平衡 火花点火燃烧循环称为: A) 奥托循环 B) 埃里克森循环 C) 布雷顿循环 D) 林德循环 CO 变换过程是: A) 以上答案都不正确 B) 一氧化碳燃烧生成二氧化碳 C) 从甲烷获取一氧化碳 D) 一氧化碳蒸汽转化为氢气和二氧化碳 开放系统通过以下方式与周围环境相互作用: A) 质量、热量和功的传输 B) 体积变化 C) 温度变化 D) 功或热量 能量表示: A) 系统做最大功的能力 B) 系统或物质的机械能和热能 C) 物质与其周围环境平衡时的性质 D) 系统克服损失的能力 下列哪项是是热的不良导体:A) 砖块 B) 水 C) 泡沫塑料 D) 铜 哪种流体流动平稳且可预测?A) 湍流 B) 过渡 C) 层流 从列表中选择最佳热导体:A) 泥炭 B) 石墨 C) 褐煤 D) 硬煤
RNA/DNA结合蛋白TDP43调节DNA不匹配修复基因1具有对基因组稳定性的影响2 3 Vincent E. Porpasek 1,2,Albino Bacolla 3,Albino Bacolla 3,Suganya Rangaswamy。1,Joy Mitra 1,Manohar 4 Kodavati 1,Issa O. Yusuf 4,Vikas H. Malojirao 1,Velmarini Vasquez 1,Gavin W. Britz 1,5,Guo-Min 5,Guo-Min 5 Li 6,li 6,Zuoshang Xu 4,Zuoshang Xu 4,Zuoshang Xu 4,Sankar Xu 4,Sankar Mitra 1,Sankar Mitra 1,Sankar Mitra 1,sankar M.Garrph M. Garrar and A. Hegde 1,8* 7 8 1神经循环中心的DNA修复研究部,美国德克萨斯州休斯敦市休斯顿市卫理公会研究所9神经外科977030。10 2美国德克萨斯州A&M大学医学院,美国德克萨斯州77843,美国。11 3分子和细胞肿瘤学系,癌症生物学系,德克萨斯大学医学博士12安德森癌症中心,休斯敦,德克萨斯州休斯敦,美国德克萨斯州77030,美国13 4 4 4 MASSACHUSETTS CHAN 14医学院的生物化学和分子生物技术系,MA约克,纽约10065,美国。17 6德克萨斯大学西南医学中心的辐射肿瘤学系,达拉斯,18 TX 75390,美国。19 7纽约州立大学宾厄姆顿大学生物科学系,纽约州宾厄姆顿20号,13902。21 8美国纽约市威尔·康奈尔医学院神经科学系,美国纽约10065,美国。22 23 *作者应向谁解决。24 25摘要26焦油DNA结合蛋白43(TDP43)越来越认可其参与27种神经退行性疾病,尤其是肌萎缩性侧面硬化症(ALS)和额叶28痴呆症(FTD)。TDP43蛋白质病,其特征在于核输出失调和29个细胞质聚集,并且与神经元中30个核功能和基因组不稳定的丧失有关。基于与TDP43 31病理与DNA双链断裂(DSB)的先前证据建立,本研究确定了在DNA不匹配修复(MMR)途径中32 TDP43的新调节作用。我们证明了TDP43的耗竭或33过表达会影响关键MMR基因的表达,包括MLH1,MSH6、34 MSH2,MSH3和PMS2。具体而言,TDP43通过替代剪接和转录本稳定性调节MLH1和MSH6 35蛋白的表达。这些发现在ALS 36小鼠模型,患者衍生的神经祖细胞和ALS 37例患者的尸体型脑组织中得到了验证。此外,MMR耗竭显示出神经元细胞中TDP43诱导的DNA损伤38的部分营救。TCGA癌症数据库的生物信息学分析揭示了TDP43与MMR基因表达式之间的显着39相关性与40种癌症亚型的突变负担之间的相关性显着。这些结果共同建立了TDP43作为MMR 41途径的关键调节剂,对理解基因组不稳定性42潜在的神经退行性和肿瘤性疾病具有广泛的影响。43