在生物科学中,机器学习(ML)已成为一项基本技术,它正在彻底改变研究方法并加快各种领域的发现。在本文中讨论了ML在生物科学中的各种用途的详细概述,包括药物开发,蛋白质科学,疫苗,生物系统和计算生物学。ML模型促进了副作用降低和疗效提高的创新药物候选物的快速发现,因此通过使用大规模的生物学数据来加快药物开发管道。mL技术正在改善蛋白质科学领域蛋白质相互作用,结构和功能的预测。ML技术极大地帮助了疫苗,表位预测和抗原选择的设计。ML模型基于个体免疫反应评估遗传和蛋白质组学数据,促进了对免疫原性和疫苗功效最佳的个性化免疫发电的产生。此外,通过复制细胞过程,建模复杂的生物网络和预测基因调节机制,ML技术正在彻底改变生物系统的研究。在计算生物学中,ML用于表型预测,基因表达分析和序列分析。ML模型促进了精确医学技术的发展,药物反应模式的表征以及通过组合多摩学数据来鉴定疾病生物标志物。充分探索ML在解决医疗保健,计算机科学家,生物学家和生物信息学家中的重大问题的潜力
抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
对于可持续发展目标而言,人工智能意味着什么?在深入探讨人工智能如何为长期解决健康问题做出贡献之前,我们有必要先从简单问题开始:什么是人工智能?一个简单的定义是,人工智能是数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力 [7]。此外,它是可持续发展所需的盟友,可以更有效地设计、执行、建议和规划地球的未来及其可持续性。目前,人工智能能力正以各种方式被用于进一步实现社会目标,而可持续发展目标 3 中关于“良好健康和福祉”的内容在联合国 2015 年制定的 17 个可持续发展目标中占有重要地位 [6]。
●计算机视觉和机器学习应用在Heliophysics中的应用,包括:太阳能磁性太阳能活动(耀斑,CMES,颗粒)太阳能风太空空间天气和空间气候气候地机无线电循环无线电射击
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
这个科学启动项目涉及使用机器学习(ML)方法对蒙特卡洛(MC)数据集进行分析。该数据集由实验性Hadronic Physics Group(Hadrex)与Alice实验直接合作,该实验与大型强子对撞机(LHC)直接合作。该研究专门针对多震颤的重子(例如ξ⁻,ξ⁺等)以及随后的衰减,这是一个称为“级联衰变”的过程。主要目的是使用生成机器学习模型通过其次要衰减来重建这些粒子。通过综合与实验观察相吻合的现实数据,该项目旨在优化常规的高能物理学分析并增强数据分析算法,以搜索稀有可观察物。为了应对这一挑战,采用了条件表格生成对抗网络(CTGAN)模型。结果表明,CTGAN在复制可变分布的同时有效地保留了原始数据的物理和内在相关性,从而增强了其改善高能物理学数据驱动研究的潜力。
认识到需要创新和有效的教学工具的必要性,decigrid的引入旨在增强围绕小数的学习经验。decigrid采用互动和视觉元素来吸引学生参与动态学习过程。视觉辅助工具,互动练习和现实世界应用程序被整合在一起,以提供对十进制概念的更明显的理解。它旨在解决学生在学习小数时经常遇到的常见误解和挑战。该工具可以识别并纠正误解,从而促进对小数操作的更准确,更全面的理解。认识到学生具有多种学习风格和步调,diCigrid允许采用个性化的学习路径。自适应功能为每个学生的独特需求量身定制学习经验,在必要时提供其他支持,并允许高级学习者以自己的节奏进步。
从12个月或更长时间的12个月开始的人应接受两剂剂量或剂量的pro剂量,然后再进行第二剂剂量的单价水甲烷疫苗,以确保对Varicelles的最佳保护(请参阅第5.1节)。在第一剂和第二剂量的病毒活疫苗之间,必须观察到一个月的最低距离。最好在首次剂量的三个月内服用第二剂。在9到12个月之间的人们显示了有关免疫原性和安全性的数据,可以在某些情况下进行9至12个月的婴儿(例如B.如果这对应于官方疫苗接种建议或较早的疫苗接种保护被认为是必要的)。在这些情况下,应每三个月对这些人进行第二剂量剂量,以每三个月对麻疹和水ver虫进行最佳疫苗接种垃圾(请参阅第4.4和5.1节)。年龄少于9个月的人没有指出该年龄段的人的统治。尚未检查ProQuad在9个月以下儿童中的安全性和有效性。
为了解决这些问题,这项工作提出了一种基于机器学习的方法,该方法可以结合来自各种遥感测量值的数据,并使用基于集合方法的分类器进行降雨估算。建议的方法在计算上比插值技术便宜,允许集成异质数据源,并在不可用的RGS的情况下提供了准确的降雨估计。它还利用了RG的高定量精度以及雷达和卫星保证的空间模式识别。所提出的方法提供了不可用的RG的降雨量的准确估计值,可以整合利用RGS的高定量精度和通过雷达和卫星确保的空间模式识别的异质数据源的整合,并且比插入方法的计算范围更低。在有关意大利地区Calabria的实际数据上进行的实验结果,与Kriging与Kriging与外部漂移(KED)相比,在降雨估计领域中得到了公认的方法,这在检测概率(0.58 versus versus versus versus误差)和均值误差(0.11 vers 0.15 vers 0.15)方面显示出显着改善。