摘要:神经退行性疾病(NDDS)是无法治愈的,令人衰弱的疾病,导致中枢神经系统(CNS)中神经细胞的进行性变性和/或死亡。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。 这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。 药物发现是一个复杂而多学科的过程。 当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。 这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。 HT可以每天研究成千上万种化合物的含量。 但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。 为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。药物发现是一个复杂而多学科的过程。当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。HT可以每天研究成千上万种化合物的含量。但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。我们在这里审查了HT在当代药物发现过程中,尤其是NDD的越来越多的作用,并评估其成功应用的标准。我们还讨论了HTS对新型NDD疗法的需求,并研究了验证新药物靶标和开发NDD的新疗法的当前主要挑战。
简介:冲击壁是火星和许多其他行星体的无处不在地质过程,对于整个太阳系中岩石和冰冷体的表面相对年龄至关重要;在过去的数十亿年中,包括古代和现代火星都发生了这样的火山口事件[1]。这些陨石坑可以根据其形态和形成过程进行分类,包括作为斜坡型特征。在火星上对这些火山口形态的分类历史上已经证明了困难和耗时,这主要是由于1)缺乏质量,高分辨率图像和2)图像的巨大图像。我们的新方法试图通过使用基于机器学习的方法(ML)方法在MARS(32°N至32°S)中的较低纬度(32°N至32°S)内的准确分类的Rampart火山口数据库来纠正此问题。
模型结构:我们的方法利用火箭(随机卷积内核变换)算法[4]从陨石光谱中提取数值特征。虽然火箭在时间序列分类中的有效性被广泛认可,但其能力与本研究中光谱分类的挑战非常吻合。反射光谱虽然不是传统的时间序列,但在与时间序列数据具有相似性的波长跨波长中显示顺序模式。火箭的计算效率和对噪声的鲁棒性使其成为此任务的理想选择,在这种任务中,捕获微妙的光谱模式至关重要。它将大量随机初始化的卷积内核应用于光谱,每个卷积内核都有随机参数,例如长度,扩张,偏置和填充物。这种随机化使火箭列出了数据的局部和全局特征,这对于区分光谱模式至关重要。
随着数字交易的迅速扩展,统一的付款接口(UPI)已成为当今世界上金融交流的青睐和方便的方法。然而,对数字平台的依赖日益增长也有助于欺诈活动的上升。本文介绍了一个强大的UPI欺诈检测系统,该系统利用高级机器学习技术来增强数字交易的安全性。建议的系统利用各种功能,包括交易模式,用户行为和设备信息,以开发全面的欺诈检测模型。机器学习算法,例如监督学习分类器和异常检测方法,用于分析历史交易数据和发现指示欺诈活动的模式。该模型利用包含合法和欺诈性交易的标签数据集,使其有效地区分正常和可疑活动。关键字:交易,付款,UPI,攻击者,欺诈,骗子,金钱,数据集。随机森林;决策树;逻辑回归;机器学习;梯度提升方法;混淆矩阵
4 Vice Dean,CS和IT Ahram Canadian University A BSTRACT的文献评论提供了对使用高级机器学习(ML)模型检测贫血的非侵入性方法的全面检查,重点是分析手,手掌和指甲的图像。贫血是一个普遍的全球健康问题,特别会影响儿童和孕妇等脆弱的群体。传统的诊断方法虽然准确,但通常是侵入性的,并且在资源有限的设置中易于访问,从而需要替代方法。通过综合当前的研究,本综述探讨了各种ML技术,包括卷积神经网络(CNN)和集合学习方法,评估其基于图像分析诊断贫血的准确性和可靠性。这项研究的一个独特方面是使用智能手机技术捕获图像,从而使诊断过程更容易访问,用户友好且具有成本效益。这些发现强调了非侵入性ML检测贫血的方法,尤其是在服务不足的人群中,但也揭示了当前研究中的显着差距。其中包括需要更大,更多样化的数据集和改进的算法,这些算法可以增强诊断精度并适应现实世界中的条件。虽然现有模型从传统的机器学习到更高级的神经网络,但已显示出可观的改进,但对于有效的实时测试和应用,进一步开发是必要的。1。诱导性贫血不是疾病。相反,这是疾病状态的症状。通过利用图像处理和ML的进步,本综述突出了这些技术提供及时的医疗干预措施的潜力,从而改善了受贫血影响全世界的数百万的健康状况。k eywords贫血,非侵入性方法,机器学习,图像分析,卷积神经网络,智能手机技术,预测分析,医疗保健可及性,功能提取,深度学习。这是一个全球公共卫生问题,发生在个人,尤其是五岁以下的儿童和发展中国家的孕妇。世界上近一半的人口经历贫血以及大量的演讲;母亲是贫血的受害者之一。在弱势群体中,贫血在其实验阶段的鉴定可以防止贫血恶化到更严重的疾病。为了解决贫血,可以使用有效且生产力的方法,该方法允许进行独立和快速的贫血测试确实是一个有价值的工具。筛查和预测贫血的基本方法确实很重要,因为贫血与贫困的身心健康状况有关。已证实,育龄妇女的贫血是
本出版物的内容由蒙特利尔大学医院中心 (CHUM) 的卫生技术和干预方法评估部门 (UETMIS) 编写和编辑。该文件也可在 CHUM 网站上以 PDF 格式获取。作者: Imane Hammana,博士。Alfons Pomp,医学博士,FRCSC,FACS 如需了解本出版物或任何其他 UETMIS 活动的信息,请联系: 卫生技术和干预方法评估部门 (UETMIS) 蒙特利尔大学医院中心办公室 B06.8057 1050, rue Saint-Denis Montreal (Quebec) H2X 3J3 电话:514 890-8000,分机 36132 传真:514 412-7460 电子邮件:detmis.chum@ssss.gouv.qc.ca 如何引用本文:“卫生技术和干预方法评估部门 (UETMIS)”。蒙特利尔大学医院中心。用于肝移植中移植物优化的机器灌注技术。摘要註釋。由 Imane Hammana 和 Alfons Pomp 准备。 2025年1月”。 ISBN 978-2-89528-179-5 只要注明出处,即可全部或部分复制本文。
人工智能(AI)和机器学习(ML)纳入精确农业的整合正在改变农业实践,提供创新的解决方案,以优化生产力,资源使用和可持续性。精确农业利用传感器,无人机,GP和卫星图像等先进技术来收集有关土壤,农作物,天气和环境因素的实时数据。AI和ML是处理和分析这些大量数据的关键推动力,使农民能够以高准确的准确性做出数据驱动的决策,预测作物产量,管理灌溉并检测虫害爆发。这些技术自动化农业任务,优化输入使用(例如水,肥料,农药),并最大程度地减少废物,从而提高了运营效率并降低了环境影响。尽管有很有希望的收益,但诸如高初始成本,数据质量和技术专业知识的需求之类的挑战仍然是广泛采用的障碍。尽管如此,AI和ML的持续进步在农业的未来中具有巨大的潜力,使其更具可持续性,有利可图和对气候变化有弹性。本文探讨了AI和ML在精确耕作中的作用,其应用,收益,挑战和未来趋势塑造了农业景观。现代农场由数据以及许多小工具和技术(例如传感器,GPS卫星,无人机和机器人)运行。实例,AI技术协助农民优化计划,以生产更多的技术及其应用,例如自然界中的资源映射以及对环境变化的影响评估。
摘要这项研究旨在确定合作学习策略对埃博尼州Onueke教育区高中中学的化学成就和保留的影响。为了解决这一目标,提出了三个研究问题和假设。采用了准实验,非等效的对照组设计,涉及两组学生。采用了一种多阶段抽样技术来从六个男女同校政府拥有的高中的228名SSII化学学生中选择代表性样本。最初,对68所学校的SSII学生的目标人群进行了分层。随后,六所公立中学是从这些阶层中随机绘制的。最后,这六所学校的3所学校被随机绘制并用作实验组,而其余的3所学校则被用作对照组。这种合并的抽样方法确保了代表性和受控实验。实验组暴露于合作学习策略,而对照组接受了传统的基于讲座的教学。的发现表明,与传统的演讲方法相比,合作学习显着增强了学生的化学成就和保留率。可靠性系数为0.97的化学成就和保留测试用于测量学生在治疗前后(治疗前/治疗后)的成就和保留率。使用平均值,标准偏差和协方差分析(ANCOVA)分析数据。结果表明,与讲座教学方法相比,合作学习策略在增强学生的成就和保留方面更为有效。这可能归因于学生在CLS中的共同责任,同伴支持,社交和沟通技巧而与LTM中的积极参与,从而导致动机的提高,批判性思维能力的发展,即时反馈和多样化的学习风格。还可以观察到,在合作学习策略小组中,男学生的平均成就和保留得分要高于女学生。这些发现对教育实践具有重要意义,将合作学习作为改善化学教学的有效策略。关键字:学生的成就,学生保留,成就测试,保留测试,协方差分析(ANCOVA)
预测性维护正在通过使组织能够预测机器故障,最大程度地减少计划外停机时间并优化维护时间表来改变行业。本文探讨了高级机器学习(ML)和人工智能(AI)技术在预测维护系统中的应用。使用传感器数据,这些技术可以实时预测机器组件故障,从而允许降低成本并提高生产率的先发制度。本研究回顾了基于AI的关键预测维护模型,例如随机森林,长期记忆(LSTM)网络,支持向量机(SVM)和神经网络,突出了它们的有效性和局限性。本文进一步研究了物联网,云计算和数字双胞胎在增强预测性维护系统中的整合,并强调了AI驱动的预测系统中解释性,可信度和透明度的重要性。关键字:预测性维护,机器学习,人工智能,行业4.0,数字双胞胎,物联网,解释性,可信赖的AI。