摘要 Öz 目的:近年来,许多重要细菌群落对抗生素的耐药性不断增加,导致人们对噬菌体分离和表征以及噬菌体不断扩大的临床潜力的文献兴趣日益浓厚。考虑到抗菌素耐药性特征,分离用于治疗鲍曼不动杆菌感染的噬菌体、确定其作用谱并进行表征非常重要。本研究旨在从环境水源中分离针对目标微生物鲍曼不动杆菌的特异性噬菌体。材料和方法:研究了 16 种不同的环境水样作为噬菌体的潜在来源。以具有多重耐药性的鲍曼不动杆菌临床分离株作为宿主细菌。使用单噬斑分离法分离针对目标细菌的特异性噬菌体。在体外研究期间,使用双琼脂法增加分离噬菌体的滴度,并评估其噬斑形态和宿主特异性。结果:噬菌体 vB_KlAcineto13 仅对目标细菌表现出溶解活性,不会感染其他细菌分离株。结论:根据本研究的结果,可以得出结论,噬菌体 vB_KlAcineto13 的宿主范围较窄,不会感染宿主细菌以外的其他测试细菌。然而,特性研究可能会提供有关噬菌体的更多详细信息。
一名63岁的男子在2001年7月被诊断出肺腺癌的男子被送往法国巴黎的霍托特·迪乌大学。通过顺铂(身体面积50 mg/m 2)和乙烯宾宾(30 mg/m 2)组成的内化学疗法的第三个过程是通过植入了12周前植入的座腔室(30 mg/m 2)的。由于肿瘤压缩引起的胸痛,该患者已经接受了2个月的皮质类固醇。在接下来的当天(第1天),他的病情因发烧而恶化(39.5°C),并与白细胞计数增加(15 10 3细胞使用90%中性粒细胞),C-RE-RICTIVE蛋白(9.5 mg/dl)(9.5 mg/dl)和纤维纤维蛋白(0.51 mg/dl)有关。因此,他接受了2天的头孢曲霉(每天3 g)和庆大霉素(每天180毫克)。尿液分析是正常的。胸部X射线以及腹部地震和心脏地震造影未经修饰。菌株的菌株。是从五个血液样本中分离出来的,包括从导管室获得的两个。取出导管室,但其培养是无菌的。在第3天,根据菌株的敏感性,将抗菌治疗更改为imipenem(每天2 g)和amikacin(每天900 mg),持续2周。在第5天,随着患者的高温,添加利福平(每天1.2 g)。在第7天,患者具有呼吸膜,并具有白细胞计数和C反应蛋白的标准化。在有氧和厌氧血液培养小瓶中接种血液样本(Bactec Plus; BD诊断系统,Sparks,MD。)。有氧小瓶阳性,并在37°C的营养琼脂上亚培养。孵育24小时后,菌落的直径为1至1.5毫米,圆形,凸,光滑且略微不透明。细菌的染色显示革兰氏阴性球菌。 在37°C下观察到脑心脏融合(BHI)肉汤的生长,但在41和44°C下观察到。 微生物(分离株954)是非运动,严格有氧和氧化酶阴性的。 它在MacConkey琼脂(无色菌落)上生长,在绵羊血琼脂上是不溶出的,没有氧化D-葡萄糖,没有减少硝酸盐,并且是细菌的染色显示革兰氏阴性球菌。在37°C下观察到脑心脏融合(BHI)肉汤的生长,但在41和44°C下观察到。微生物(分离株954)是非运动,严格有氧和氧化酶阴性的。它在MacConkey琼脂(无色菌落)上生长,在绵羊血琼脂上是不溶出的,没有氧化D-葡萄糖,没有减少硝酸盐,并且是
摘要:这项研究旨在研究抗碳青霉培养素的生物膜产生能力鲍曼尼(Baumannii)(CRAB)(CRAB),70%乙醇和0.5%钠次氯酸钠的生物膜膜片潜力在生物膜产生和细菌基因型之间。测试了总共111个螃蟹分离株的抗菌易感性,生物膜形成,编码碳青霉酶的基因的存在以及与生物FILM相关的毒力因子。还测试了消毒剂和SENP对CRAB分离株的抗纤维膜作用。绝大多数测试的分离株是生物膜生产者(91.9%)。在57%,70%和76%的螃蟹分离株中发现了BAP,OMPA和CSUE基因,与非生物产生的生产者(25%)相比,在生物纤维生产国(78.6%)中,CSUE在生物纤维生产国(78.6%)中的普遍性更高。测试的消毒剂比对弱生产者的抗纤维膜对中度和强生物膜产生的影响更好(p <0.01)。SENP对所有测试的浮游症状(MIC范围:0.00015至> 1.25 mg/ml)和生物纤维膜包含的蟹表现出抑制作用,最低生物膜抑制浓度低于0.15 mg/ml,生物纤维抑制浓度低于0.15 mg/ml。总而言之,SENP可以用作有前途的治疗和医疗设备涂料剂,因此是预防生物膜相关感染的替代方法。
acinetobacter(A。)鲍曼尼(Baumannii)已成为一种难以治疗的医疗性细菌性人类病原体。A。Baumannii应在“一种健康”方法下处理,其在人类,动物和环境环境中的监视对于理解其合理的传播动态而言至关重要。准确鉴定鲍曼尼a,其克隆复合物和序列类型对于理解流行病学分布,进化关系和传播动力学很重要。广泛的基因分型技术用于分化calcoaceticus-baumannii(ACB)复合物。但是,没有用于快速测定的单一直接基因型方法。当前,存在两个多焦点序列分型(MLST)牛津和牧场方案;尽管被认为是序列键入的黄金标准,但协调方案并不是一个简单的过程。基于基于基因组测序的核心基因组多焦点序列(CGMLST)和核心单核苷酸多态性(CGSNP)是可靠且精确的序列键入;但是,它们的昂贵,具体取决于测序的质量并要求更高的计算技能。在过去十年中,基于飞行质谱(MALDI-TOF MS)物种鉴定的基质辅助激光解吸时间已成功地用于快速区分ACB复合物。MALDI键入非常快,更容易,便宜,并且与分子方法一样可靠。人工智能和机器学习的应用可能在克隆序列类型(ST)级别的标识中很有用。应变水平A. Baumannii识别置信度在增加了具有明确定义的分离株的内部参考光谱时提高了现有数据库。流动性分类学分类正在发展,正在描述更新的ST;因此,建立鲍曼尼曲霉参考光谱的中央存储库将有助于整个实验室协调,并在“一个健康”的观点上对鲍曼尼a。a。baumannii的全球级别监视计划有助于。本评论阐明了与鉴定活杆菌所采用的技术以及MALDI-TOF MS的潜在应用和未来观点有关的挑战。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年12月26日。 https://doi.org/10.1101/2024.12.26.630398 doi:Biorxiv Preprint
1 墨西哥国立自治大学医学院实验医学研究单位感染学、微生物学和临床免疫学实验室,墨西哥城 06720,墨西哥; juliamorenomanjon@gmail.com(JM-M.); catalina_gayosso@yahoo.com.mx(CG-V.); joseluis_f@hotmail.com (JLF-V.) 2 墨西哥国家政治科学研究所生物科学研究生院医学细菌学实验室,墨西哥城 11350,墨西哥 3 墨西哥国立自治大学遗传进化项目,库埃纳瓦卡 62209,墨西哥; iago@ccg.unam.mx(SC-R.); vmateo@lcg.unam.mx (VM-E.) 4 牛津大学生物系,牛津 OX1 3SZ,英国; keith.jolley@biology.ox.ac.uk (KAJ); martin.maiden@biology.ox.ac.uk (MCJM) * 通信地址:sgiono@yahoo.com (SG-C.); alcantar@unam.mx (MDA-C.)
图 2. 适用于鲍曼不动杆菌 276 AB5075 的基因组编辑策略示意图,用于删除 craA 。质粒特征如图 1 所示。当 277 表示时,LB 琼脂平板补充了 100 mg/L 氨苄青霉素 (Ap)、200 mg/L 阿普霉素 (Apr) 和/或 30 mg/L 亚碲酸盐 (Tel)。为了确认 craA 缺失,使用引物 craA fw seq 和 craA down rv 进行菌落 PCR 279。作为对照,使用野生型 AB5075 280 (WT) 和 pEMGT-craA (p)。M:DNA 分子量标记,条带大小以千碱基 (Kb) 表示。使用 BioRender.com 创建。282
新生儿败血症会引起大量的发病率和死亡率,其负担是由低收入国家(LIC)承担的。脆弱的新生儿种群中多药耐药病原体的出现对婴儿的生存构成了紧迫的威胁。acinetobacter spp。在全球新生儿中越来越负责严重疾病。此升级的原因尚不清楚,但是宿主,病原体和环境因素都可能有助于。acinetobacter spp。菌株通常对新生儿败血症的第一线经验治疗具有抗性,在许多重症新生儿中使这些抗生素无效。在全球范围内,新生儿重症监护病房(NICUS)中的较广谱抗生素方案的升级导致出现了更具抗性菌株的出现,包括耐碳纤维菌菌(抗碳纤维)baumanii(CRAB),从而导致感染的感染越来越多。虽然正在考虑一些现有的抗菌剂以治疗杆菌属。感染,大多数与新生儿的临床使用相距甚远。迫切需要对这些感染,传播动力学和预防措施的临床表型进行进一步研究,以减少新生儿死亡。本评论旨在总结杆菌属的作用。在新生儿败血症中,包括宿主,病原体和环境因素,疾病的全球流行病学和临床特征,治疗选择以及未来的研究优先级。
病毒是地球上最丰富的生物学实体(Breitbart和Rohwer,2005年)。噬菌体或噬菌体,特别是感染了脑原生物的微生物。这些噬菌体通过裂解循环复制,裂解循环是典型的有毒噬菌体的,或以预言整合到宿主基因组中,或者在宿主细胞质中复制为质粒(Piligrigimova等,2021)。综合噬菌体基因组(预言)与宿主染色体一起复制,并通过细胞分裂从初始感染细胞转移到其后代(Maurice等,2013)。整合到细菌染色体中可以改变宿主表型,并将新基因和功能引入细菌代谢库中(Ramisetty和Sudhakari,2019年)。预言编码负责抗生素耐药性和/或毒力因子的基因(Costa等,2018; Kondo等,2021;López-Leal等,2020;Piña-González等,2024,2024),为其细菌宿主提供适应性益处(Li et al。