此预印本版的版权持有人于2025年1月23日发布。 https://doi.org/10.1101/2025.01.22.25320957 doi:medrxiv preprint
同行评审的论文Galdon G.,Pourhabibi Zarandi N.,Deebel,N.,Zhang,S.,Cornett,O. Sadri-Ardekani,H。“ 3D器官系统中人类XY和XXY未成熟睾丸的体外产生”,生物工程2024,11,677
Eden Haverfield,Dphil,FACMG是一名医学遗传学家,由美国医学遗传学和基因组学委员会(ABMGG)认证。她在商业临床诊断实验室,初创公司和学术机构中拥有超过18年的经验。Haverfield博士担任基因组生活的医疗事务主管。 在此之前,Haverfield博士在Centogene,Invitae,Genedx和芝加哥大学担任越来越多的责任。 Haverfield博士在多个临床领域带来了深厚的基因组学经验和领域知识,并热衷于驾驶和驱散基因组学在常规医疗保健,人口健康和精密医学中的使用。 Haverfield博士在宾夕法尼亚大学学习了生物人类学,并获得了联合王国牛津大学的硕士学位和博士学位。 她在芝加哥大学完成了博士后培训。Haverfield博士担任基因组生活的医疗事务主管。在此之前,Haverfield博士在Centogene,Invitae,Genedx和芝加哥大学担任越来越多的责任。Haverfield博士在多个临床领域带来了深厚的基因组学经验和领域知识,并热衷于驾驶和驱散基因组学在常规医疗保健,人口健康和精密医学中的使用。Haverfield博士在宾夕法尼亚大学学习了生物人类学,并获得了联合王国牛津大学的硕士学位和博士学位。 她在芝加哥大学完成了博士后培训。Haverfield博士在宾夕法尼亚大学学习了生物人类学,并获得了联合王国牛津大学的硕士学位和博士学位。她在芝加哥大学完成了博士后培训。
迈克尔·T·帕森斯(Michael T. Parsons),1, * Miguel de la Hoya,2 Marcy E. Richardson,3 Emma Tudini,1 Michael Anderson,4 Windy Berkofsky-Fessler,5 Sandrine M. Caputo,6 Raymond C. Chan,7 Melissa S. Cline,8 Bing-Jian,8 Bing-Jian Feng,9 Fortuno Crimea,1000 Dler,1000 Dler,1000 Dler,1000 dler,HIR,HIR,HIR hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir hir En Hruska,5 Paul James,13 Rachid Karam,3 Huei San Leong,14 Alexandra Martins,15 Arjen R. Mensenkamp,Alvaro N. Monteiro,17 Vaishnavi Nat,17 Robert O'Connor ,25 Sean Tavtigian,26 Bryony A. Thompson,27 Amanda E. Toland,28 Clare Turnbull,Jr。39,Jamie Wedget。
Isabel Spier 1 , 2 , 3 , Xiaoyu Yin 1 , 4 , 5 , * , Marcy Richardson 6 , Marta Pineda 3 , 7 , 8 , Andreas Laner 9 , Deborah Ritter 10 , 11 , Julie Boyle 12 , Pilar Mur 7 , 8 , Thomas v O. Hansen 13 , 14 , Xuemei Shi 15 , Khalid Mahmood 16 , 17 , John-Paul Plazzer 4 , ELISABET OGNEDAL 18,玛格丽塔·诺德林(Margareta Nordling)19,20,苏珊·费灵顿(Susan M. ,7,8,Sean V. Tavtigian 12,29,Andrew Latchford 30,31,Ian M. Frayling 30,32,Sharon E. Plon 10,11,Marc Greenblatt 33,Finlay A. Macrae 4,5,Stefan Aretz 1,2,2,2;代表洞察力 - 克林根遗传性结肠癌/多兴趣变体专家小组
摘要 纤毛病是一种广泛的遗传性发育和退行性疾病,与运动纤毛或原发性非运动纤毛的结构或功能缺陷有关。已知的纤毛病致病基因约为 200 种,虽然基因检测可以提供准确的诊断,但接受基因检测的纤毛病患者中有 24-60% 并未得到基因诊断。部分原因是,根据美国医学遗传学学院和分子病理学协会的现行指南,很难对由错义或非编码变异引起的疾病做出可靠的临床诊断,而这些变异占疾病病例的三分之一以上。PRPF31 突变是退行性视网膜纤毛病常染色体显性视网膜色素变性的第二大常见病因。在这里,我们提出了一种高通量高内涵成像检测方法,可定量测量 PRPF31 错义变异的影响,符合最近发布的临床变异解释基线标准体外测试标准。该检测利用了使用 CRISPR 基因编辑生成的新型 PRPF31 +/– 人视网膜细胞系,以提供具有明显更少纤毛的稳定细胞系,其中表达和表征了新的错义变体。我们表明,在零背景下表达纤毛病基因错义变体的细胞的高内涵成像可以根据纤毛表型表征变体。我们希望这将成为临床表征意义不明确的 PRPF31 变体的有用工具,并可以扩展到其他纤毛病中的变体分类。