情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
随着基因疗法的出现,肌萎缩性侧索硬化症(ALS),基因测试激增了这种缓解。尽管在家族性ALS中,C9orf72,SOD1,FUS和TARDBP的基因测试经验丰富,但探索所有ALS相关基因(SALS)中所有ALS相关基因的遗传变异的大型研究仍然很少。鉴于SAL的复杂遗传结构,在诊断环境中的基因测试是具有挑战性的,其中有一些遗传变异型具有较大和小的效应大小。缺乏基因面板中遗传变异和患者律师律师的解释指南。我们旨在通过将美国医学遗传学和基因组学学院(ACMG)标准应用于全基因组测序数据,从6013个零星ALS患者和2411个匹配的Project Project对照组中,对ALS基因的遗传变异性进行了彻底的表征。我们研究了90个ALS相关基因的遗传变异,并应用了定制的ACMG标准来鉴定病原体IC和可能的致病变异。的变体。此外,我们使用扩展猎人工具确定了C9orf72,ATXN1,ATXN2和NIPA1中重复扩展的长度。我们发现C9orf72在5.21%的SALS患者中重复扩张。在50个ALS相关的基因中,我们没有识别出任何致病性或可能的致病性变异。在5.89%中发现了一种致病性或可能的致病变体,大多数在SOD1,TARDBP,FUS,NEK1,OPTN或TBK1中发现了大多数。在17.33%的病例中检测到ATXN1,ATXN2,NIPA1和/或UNC13A中的孤立危险因素。明显更多的病例至少携带了一种致病性或可能的致病性变异(优势比1.75; p值1.64×10-5)。在71.83%的情况下,我们没有找到任何遗传线索。 发现了2.88%的变体。 这项研究提供了大量萨尔群体中的致病性和可能致病性遗传变异的清单。 总体而言,我们在38个已知ALS基因中发现了11.13%的ALS患者中的病原和可能的致病变异。 与寡聚假说一致,我们发现在对照组合的情况下,变体的组合明显更多。 许多未知意义的变体可能会导致ALS风险,但是缺乏可靠识别和称重的诊断算法。 这项工作可以作为咨询和ALS基因面板组装的资源。 鉴于对ALS的基因测试的兴趣日益增长,需要进一步表征SAL的遗传结构。在71.83%的情况下,我们没有找到任何遗传线索。发现了2.88%的变体。这项研究提供了大量萨尔群体中的致病性和可能致病性遗传变异的清单。总体而言,我们在38个已知ALS基因中发现了11.13%的ALS患者中的病原和可能的致病变异。与寡聚假说一致,我们发现在对照组合的情况下,变体的组合明显更多。许多未知意义的变体可能会导致ALS风险,但是缺乏可靠识别和称重的诊断算法。这项工作可以作为咨询和ALS基因面板组装的资源。鉴于对ALS的基因测试的兴趣日益增长,需要进一步表征SAL的遗传结构。
摘要背景法布里病是一种 X 连锁溶酶体贮积症,由 α-半乳糖苷酶 A 缺陷引起,导致神经酰胺三己糖在多个器官部位积聚,并显著损害心血管和肾脏。根据临床确诊,法布里病的全球患病率估计为 1/40 000 至 1/170 000。我们旨在确定英国生物样本库中法布里病致病变异的患病率。方法我们在英国生物样本库的 200 643 名个体的外显子组测序数据中寻找 GLA 基因变异。我们使用 ACMG/AMP 指南(美国医学遗传学学会/分子病理学协会)对致病性进行分类,并将基线生物标志物数据、医院 ICD-10(国际疾病分类第 10 版)代码、全科医生记录和自我报告的健康数据与没有致病变异的数据进行了比较。结果我们确定了 81 个 GLA 编码变异。我们确定了八种可能致病的变异,这些变异非常罕见(<1/10 000 人),并且之前曾报道会导致法布里病,或者是蛋白质截短变异。36 人携带其中一种变异。在英国生物样本中,可能致病的法布里病致病变异的患病率为 1/5732(晚发型致病变异)和 1/200 643(导致经典法布里病的变异)。结论在未经选择的人口样本中,法布里病致病 GLA 变异的患病率比报道的法布里病患病率更高。这些变异绝大多数与晚发型有关。晚发型法布里病的患病率可能超过目前的估计。
目的:100,000个基因组项目诊断出了四分之一的受影响参与者,但有26%的诊断不在应用基因面板上;许多人是从头变体。评估没有基因面板的双重变体更具挑战性。方法:我们试图使用Genepy识别丢失的双重诊断,其中包含等位基因频率,Zygosity和一个用户依赖的有害度量,每个参与者都会产生每个基因的综合基因分数。我们计算了78,216个100,000个基因组项目参与者的2862个隐性疾病基因的遗传评分。对于每个基因,我们对参与者的基因分数进行了排名,并在没有诊断的情况下对受影响的参与者进行了仔细检查,他们的分数在每个基因的前5名中排名。在参与者表型与感兴趣的疾病基因重叠的情况下,我们提取了稀有变体和应用相,clinvar和ACMG分类。结果:3184个未经分子诊断的人的受影响的个体的遗传评分为前5位,而3184中的682个(21%)的表型与顶级基因重叠。在669(18%)表型匹配的病例中的122例(不包括13例撤回参与者)中,我们确定了假定的错过诊断(占所有未诊断参与者的2.2%)。另外334例(50%)中有334例可能遗漏了诊断,但需要验证功能验证。结论:大规模应用基因研究已确定了456个潜在诊断,证明了新型诊断策略的价值。©2024作者。由Elsevier Inc.代表美国医学遗传与基因组学院出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要非典型股骨骨折(AFF)被认为是双膦酸盐罕见关联的,在没有双膦酸盐使用的单基因骨疾病的患者中也有报道。AFF和单基因骨疾病之间的确切关联仍然未知。我们的目的是确定荷兰AFF队列中单基因骨疾病的患病率。AFF患者是从荷兰的两个专业骨中心招募的。对AFF患者的病历进行了审查,以了解单基因骨疾病的临床特征。根据美国医学遗传学和基因组学学院(ACMG)分类指南,对参与单基因骨疾病的37个候选基因中的全异位测序鉴定的遗传变异是由37个候选基因进行的。使用DNA阵列基因分型数据评估了候选基因重叠的拷贝数变化。该队列构成60名AFF患者(包括一对兄弟姐妹),其中95%接受了双膦酸盐。15例AFF患者(25%)具有单基因骨疾病的临床特征。其中八个(54%),包括一对兄弟姐妹,在PLS3,COL1A2,LRP5或ALPL中具有(可能)的致病变体。一名患者在不怀疑单基因骨疾病的患者中携带了可能的致病变异(2%)。总共有9名患者(15%)具有(可能)的致病变异。在一名患者中,我们在6号染色体中识别出12.7 MB缺失,包括Tent5a。©2023作者。发现表明AFF和单基因骨骼疾病,尤其是成骨的骨骼疾病和下磷酸症之间存在牢固的关系,但主要是在患有这些迷失症状症状的个体中。临床怀疑这些疾病的AFF患者(可能)致病变异的高收率强调了对AFF患者进行仔细临床评估的重要性。尽管目前尚不清楚双膦酸盐在这种关系中的相关性,但临床医生应考虑这些患者的医疗管理中的这些发现。Wiley Wendericals LLC代表美国骨骼和矿物研究学会(ASBMR)发表的《骨与矿物研究杂志》。
内分泌疾病,包括糖尿病,甲状腺功能障碍和其他激素失衡,对全球疾病负担显着贡献(1)。这些疾病不仅会影响公共卫生,而且会导致长期残疾和受影响个体的生活质量降低(1)。这些疾病的患病率正在增加,尤其是在人口老龄化和代谢疾病发生率增加的情况下(2,3)。这些疾病可能是由单个基因(孟德尔或单基因疾病)中的罕见变异引起的,由多种遗传变异的综合作用,或环境和生活方式因素(2型糖尿病型糖尿病或肥胖)引起的。新技术(例如基因疗法)在无法用传统药物有效治疗疾病时会提供希望。当已知遗传疾病的病因时,这是可能的。因此,在基因治疗药物的帮助下,将基因的功能副本引入了人体,从而减慢了疾病的进展,在某些情况下甚至可以取得显着改善(4)。近年来,技术的进步促进了广泛种群的基因组多样性的特征(5)。下一代测序(NGS)和基因组广泛的关联研究(GWASS)已被强烈用于研究内分泌疾病的遗传基础(6-9)。为提高诊断,预后和遗传咨询的准确性,越来越多地认识到具有特定诊断患者(12)患者的变异数据库的重要性。然而,使用美国医学遗传学学院和分子病理学协会(ACMG/AMP)广泛推荐的标准对识别变体的解释是具有挑战性的,因为在大多数数据库中,与规格变体相关的详细表型信息在大多数数据库中受到限制(11)。此类数据库构成了遗传变异的系统组织的存储库,并补充了临床数据(13)。通过允许共享有关基因,变体和病理表型的信息,他们促进了研究人员,临床医生和患者之间的沟通(11)。先前的研究创建了数据库,其中包括与特定内分泌病有关的遗传变异。例如,MARGRAF等人开发的MEN2 RET数据库。是一个可公开访问的数据库,其中包含与MEN2综合征以及相关临床数据相关的所有RET序列变体(14)。“ NGS和PPGL研究小组”还收集并在SDHB基因中进行了分类,这是负责
基因组坐标位置渗透载体表型基因覆盖g.8003996666delc(Chr17,grch38)外显子3高3个高note note note note note note note note 15倍变体解释:p.ala83valfsx84在CCDC40中的p.ala83valfsx84变异,先前在19个雄性和7型杂质的helel helesozygous and pc n hymozygous and pc contia和7 compio and syzygous and;在1个纯合受影响的亲戚中与疾病隔离(Becker-Heck 2011 PMID:21131974,Nakhleh 2012 PMID:22499950,Antony 2013 PMID:23255504,Zariwala,2013 PMID:23891469)。该变体已在gnomad(http://gnomad.broadinstitute.org)中鉴定出0.074%(860/1167354)的非欧洲欧洲染色体。但是,此频率足够低,可以与隐性等位基因频率保持一致。在Clinvar中也报道了这种变体(变体ID 31069)。该变体被预测会引起移架,从而改变蛋白质的氨基酸序列,从位置83开始,并导致下游的过早终止密码子84氨基酸。然后预测这种改变会导致截短或不存在的蛋白质。功能研究表明,CCDC40功能的丧失导致纤毛结构和运动异常(Becker-Heck 2011 PMID:21131974)。总而言之,该变体符合标准,该标准被归类为常染色体隐性原发性睫状运动障碍的致病性。ACMG/AMP标准应用:PVS1,PM3_VERYSTRONG,PM2_SUPPORTING,PP1。疾病信息:原发性睫状运动障碍是一种罕见的遗传病,在遗传上是异质的。它与复发性呼吸道感染,内脏异常定位以及不育有关。这是由于器官和组织衬里发现的纤毛和鞭毛的运动性异常。呼吸道感染,粘液清除率降低,鼻塞和慢性咳嗽始于幼儿,可能导致支气管扩张。Situs Inversus Totalis是所有内脏器官的镜像逆转,在40-50%的个体中发现。雌性运动障碍的雄性由于精子运动异常而经常是不育的,而患有这种疾病的女性有时可能是由于输卵管中的纤毛异常引起的。其他症状可能包括大脑中的复发性耳朵感染和脑积水。Pathogenic variants in CCDC40 contribute to 3-4% of primary ciliary dyskinesia (Medline Plus: https://medlineplus.gov/genetics/condition/primary-ciliary-dyskinesia, GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1122).家族性和生殖风险疾病患病率(估计)载体频率(估计)生殖风险(估计)1/16000(https://medlineplus.gov/genetics/conditics/condition/primary-ciliary-ciliary-ciliary-dyskinesia)
背景 如果基因突变不在生殖系内(即配子内),则称为“体细胞突变”;因此,这些突变不会从父母传递给后代。体细胞突变可能从头出现或生命后期出现,在肿瘤中非常常见(Raby & Blank,2022 年)。体细胞突变有很多种类型,包括单核苷酸多态性 (SNP);结构变异,如缺失、倒位或易位,以及较小的染色体异常,如短串联重复或基因融合。大多数突变不会导致疾病(Kohlmann & Slavotinek,2022 年)。SNP 是最常见的基因突变类型,包括错义突变。这些突变是单个碱基对的变化,其中一个核苷酸取代了另一个核苷酸。超过 65% 的由基因突变引起的疾病是由于 SNP 引起的(Kohlmann & Slavotinek,2022 年)。根据全基因组测序的估计,任何给定个体的平均 SNP 数量为 280 万到 390 万 (Kohlmann & Slavotinek, 2022)。插入/缺失 (Garrett 等人) 多态性通常为单个核苷酸,但可能多达四个核苷酸。SNP 通常会导致移码突变,从而导致过早终止密码子和等位基因失效 (Kohlmann & Slavotinek, 2022)。结构变异通常被归类为大于 1000 个碱基对。这些包括缺失、重复、倒位、易位或环状染色体形成。由于受影响的基因数量众多,这些变异通常会导致严重的遗传异常;例如,慢性粒细胞白血病的主要原因是由于 9 号和 22 号染色体之间的易位,导致融合基因。最常见的结构变异是拷贝数变异 (CNV),指的是不同个体中 DNA 片段拷贝数的不同。例如,一个人可能有三个特定片段的拷贝,而另一个人可能只有两个。这些变异可能导致受影响基因的失调、功能获得或功能丧失 (Kohlmann & Slavotinek, 2022)。需要或产生精确数量蛋白质产品的敏感基因往往更容易受到这些变异的影响 (Bacino, 2022)。任何大小的突变都可能是致病的,必须根据突变导致疾病的可能性进行分类。美国医学遗传学和基因组学学院 (ACMG) 将突变分为五类,如下:致病、可能致病、意义不明、可能良性和良性。 “可能致病”和“可能良性”指的是比其各自的致病和良性类别更弱的证据,“意义不确定”指的是证据不符合良性或致病性的标准,或双方的证据相互矛盾(Kohlmann & Slavotinek,2022)。预测算法已用于解释变异并预测变异是否会影响基因功能或基因剪接。这些算法是公开的
罗克维尔,马里兰州- 2024年7月22日 - 全球全球分子诊断专业社会的分子病理学协会(AMP)今天发表了共识建议,以帮助设计和验证临床DPYD基因分型测定,促进对不同实验室的测试标准化,并改善患者护理。手稿,“ DPYD基因分型建议:美国医学遗传学与基因组学院(ACMG),美国病理学家(CPIC)的临床药物遗传学实施联盟(CPIC)的联合共识建议(ESPT),药物基因组学知识库(PharmGKB®)和药物变异财团(PharmVar),”在《分子诊断杂志》发表之前在线发布。建立了AMP临床实践委员会的药物基因组学(PGX)工作组,以定义推荐用于临床测试的药物遗传学等位基因的关键属性,以及应包含在临床PGX基因分型测定中的最低变体。新的DPYD报告是AMP PGX工作组开发的一系列建议中的最新报告,旨在帮助标准化常用基因分型测定法的临床测试。它基于对CYP3A4 / CYP3A5,TPMT / NUDT15,CYP2D6的早期临床基因分型建议,对于华法林测试,CYP2C9和CYP2C19重要的基因。可选变体的第2层列表符合至少一个但不是全部标准的列表。对于医疗保健提供者而言,重要的是要实施这些建议以及其他相关的临床准则,例如CPIC和DPWG发布的建议,这两者主要着重于解释PGX测试结果并为特定药物对的治疗建议提供治疗建议。“Testing for variants in the DPYD gene can help identify individuals who may be at increased risk for severe fluoropyrimidine-related toxicity,” said Victoria M. Pratt, PhD, Co-Chair of the AMP PGx Working Group, Director of the Scientific Affairs for Pharmacogenetics at Agena Bioscience, and Adjunct Professor of Clinical Pharmacology at Indiana University School of Medicine.“这份新报告旨在改善临床实验室的临床实践,并促进临床实验室的标准化,并确保将适当的变体包括在临床PGX DPYD分析中。”与以前的临床PGX基因分型测定建议一样,AMP PGX工作组使用了建议包含的变体的两层分类。之所以选择,是因为它们对蛋白质和/或基因表达的功能活性具有良好的特征性作用,在人群/祖先组中具有明显的次要等位基因频率,具有可用的参考材料,可用于测定验证,并且对于使用标准分子测试方法进行疑问的临床实验室在技术上是可行的。 这些有关临床基因分型测定的建议不包括对蛋白质功能或基因表达不明的变体。 它们是作为参考指南而不是限制性列表。,是因为它们对蛋白质和/或基因表达的功能活性具有良好的特征性作用,在人群/祖先组中具有明显的次要等位基因频率,具有可用的参考材料,可用于测定验证,并且对于使用标准分子测试方法进行疑问的临床实验室在技术上是可行的。这些有关临床基因分型测定的建议不包括对蛋白质功能或基因表达不明的变体。它们是作为参考指南而不是限制性列表。
分类(Yorczyk等,2015; Kim等,2019),主要与ACMG AMP准则准则允许的主观性和不确定性程度有关。他们建议在解释过程中使用28个标准来区分:良性(可能是良性)的意义(VUS),可能是致病性和致病性变体。但是,仅在临床实践中获得这些标准的一部分,并且必须使用带注释的变体集合。为提供这样的资源,已经制定了各种倡议,包括Clinvar(Landrum等,2016),Clingen(Savatt等,2018),Varsome(Kopanos等,2019)和Intervar(Li and Wang,2017)。这些从专家和各种资源中收集数据,并可以为未报告的变体提供解释。然而,此自动化过程有时可能会产生不适当的结果,并且应谨慎查看数据。,如果我们专注于分类证据,一方面,最具挑战性的标准之一是PM1“位于突变的热点和/或关键和完善的功能域(例如,酶的活性位点),没有良性变化”,这是在报告的病例中使用的约10%(Amendola等人,2016年)。要提取此信息,自动化系统主要依赖Uniprot(Uniprot联盟。2017)和“ dbnsfp31a_interpro”,该数据库是DBNSFP(Liu等,2011; Liu等,2016)和Interpro(Mitchell等,2019)的域信息数据库,可在蛋白质家族,域,域和功能性点上包含有关蛋白质家族和功能性的信息。已经使用保守域数据库(CDD)(Marchler-Bauer等,2015)制定了其他计划,例如Subrvis分数(Gussow等,2016),旨在评估基因子区域对变体的不耐受性。通常,PM1标准与突变簇的功能区域的广泛视图相关联。然而,很难使用,因为这种聚类的定义不足和理解,如其在Vasome中的各种解释所示(Kopanos等人,2019年)和Intervar(Li and Wang,2017)。它也可能受到基因非人类疾病的兴趣和分类的变异次数的高度偏见。另一方面,最常用的证据是PM2/BA1/BS1“人口数据库中缺失的变异或等位基因频率太高,对于该疾病而言,据报道约有50%的病例(Amendola等人,2016年)。该标准的假设非常简单:如果已报告了普通人群频率高的变体,则不能是一种罕见的致病变异,否则该疾病的频率将更高;如果从未报道过变体,或者频率很低,则可能是一种罕见的致病变异。这些信息从大尺度基因组/外显子组测序项目中很大,大多数人从侏儒(Koch,2020年)或人口数据库中收集了这些信息,例如阿巴拉姆(巴西人人口)(Naslavsky等人)(Naslavsky等人,更大的Midder Midder eali Milder Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide eLDEL,202)人口)(Scott等,2016)。然而,人类进化不允许变异的基因组饱和,其中一些在遗传漂移引起的人群中非常罕见(Bach,2019)。的确,如果人口足够大,几代人几代人的失踪率很可能会导致其消失,而只有少数几代人将在人群中固定。因此,尽管人们认识到,从人类中出现了每一代人的50至100个变种,但这些事件中的大多数在进化过程中都丢失了,这解释了为什么我们的基因组中不存在所有中性替代。另一种观点是基于一个简单的假设,即78亿活着人类中每一个中的50至100从头变体都应该产生与生命兼容的每种核苷酸变化