M Naresh Kumar 博士 人力资源开发计划规划和评估组组长 国家遥感中心 海得拉巴,特伦甘纳邦 - 500037 印度政府太空部印度空间研究组织 tot@nrsc.gov.in
图1。ACSS sun sensor device ........................................................................................................................... 5 Fig 2.ACSS schematic ........................................................................................................................................ 5 Fig 3.Labeling ..................................................................................................................................................... 8 Fig 4.Angles reference ....................................................................................................................................... 8 Fig 5.Mechanical interface .................................................................................................................................. 9 Fig 6.Electrical interface ................................................................................................................................... 11 Fig 7.Signal acquisition recommended............................................................................................................. 11 Fig 8.Connector pin numbering ........................................................................................................................ 12 Fig 9.Spectral Responsivity .............................................................................................................................. 13 Fig 10.Sensor response of nominal and redundant units of ACSS .................................................................. 14 Tables
作为所有航空航天市场监视技术的领导者,ACSS 致力于提供航空电子设备,通过增强安全性、态势感知和效率来帮助创造更安全的天空。ACSS 是自动相关监视广播 (ADS-B) 解决方案开发领域的领导者,十多年来一直致力于增强全球下一代空中交通管理和现代化计划。这包括用于航空运输和区域飞机的 SafeRoute+ ADS-B In 应用程序套件以及
作为所有航空航天市场监视技术的领导者,ACSS 致力于提供航空电子设备,通过增强安全性、态势感知和效率来帮助创造更安全的天空。ACSS 是自动相关监视广播 (ADS-B) 解决方案开发领域的领导者,十多年来一直致力于增强全球下一代空中交通管理和现代化计划。这包括用于航空运输和区域飞机的 SafeRoute+ ADS-B In 应用程序套件以及
根据[5]的五个最具吸引力的HTL导体总结。前三个也显示在上面表1的粗体框中。1)ACS(铝制导体,支撑钢):额外或超高强度钢芯,退火1铝外链,通常为梯形,即ACSS/TW。陷阱设计使链条可以紧密地融合在一起(rel。圆),减少它们之间的空间距。2)G(Z)TACSR(间隙型导体):高强度钢芯(镀锌或铝制钢钢)。热(或超热)抗铝外链,有时是梯形。3)(Z)Tacir(Invar):Invar(“不变”)铁核合金核心。热(或超热)抗性铝外链。4)ACCC/TW(CTC Corp),铝制导体,复合芯:碳/玻璃纤维聚合物芯,退火校友。陷阱。外链。5)ACCR(3M Corp.),铝制导体,复合增强:氧化铝纤维增强金属基质核心。热(或超热)抗性铝外链。
通过确保成员站在新方法发展的前沿,并具备成为有效社会科学家所必需的技能和经验,并通过提供机会让他们能够胜任当前和/或未来的角色以及公务员队伍的所有等级,通过内部和外部的专业发展机会发展技能和经验,使所有 GSR 成员都具备有效和创新所需的技能,并处于其专业的最前沿。我们将:• 开发资源来确定、支持和促进为社会和行为社区的所有分析师提供专业和技能发展机会(例如方法、数据科学、管理技能、解释、行为科学、影响/展示工作利益的信心、教育他人)• 探索职业机会模式,如学术实习、私营部门借调• 确定和利用公务员制度(例如高潜力计划)和外部发展机会(例如 UKRI、SRA、AcSS)
霍尼韦尔 Primus Epic 系统 (EASy II 4 th Cert) 飞行显示系统 (带四个 14 英寸 LCD 显示屏) 霍尼韦尔 EASy 通信 (甚高频数据无线电) 三重霍尼韦尔 TR 866B 通信 (HF) 双霍尼韦尔 KHF-1050 SELCAL 甚高频和高频 霍尼韦尔驾驶舱音频 三重霍尼韦尔 AV 900 紧急定位器,带导航接口 霍尼韦尔 Rescu 406AF 卫星通信系统 霍尼韦尔 Jetwave KA 波段 (Wifi) � � �������� VOR/ILS/MARKER/GPS 双霍尼韦尔 NV878A ADF 系统 双霍尼韦尔 DF-855 飞行管理系统 (FMS) 三重霍尼韦尔 EASY 电子杰普森海图 霍尼韦尔 EASY 彩色气象雷达 霍尼韦尔Primus 880 DME 系统双霍尼韦尔 DM -855 ATC,应答器双霍尼韦尔 XS- 858-B W/模式 S 雷达高度计双霍尼韦尔 KRA-405B TCAS II 系统 ACSS TCAS 3000(更改 7.1)
(i)在新的100英尺宽的1右通行右上方的230 kV双电路传输线环上构建一个新的新型,通过切割230 kV beaumeade-beco线#2143位于位于结构#2143/12-13之间的交界处的2143号线#2143,毗邻该公司现有的beco beco beco beco beco beco dendatine(II)230 kveaumeadekv beaumeadedccv beaumeadedc(i)230 kv beaumeade(i)#(i)230 kv beaumeade(i)# Beco-DTC线#2249(“ DTC循环”)。从交界处,DTC环将沿建议的路线延伸约1.30英里,通常向东北向拟议的DTC变电站延伸。虽然提出的交界处位于现有的通行权中,但提议的DTC循环将在新的通行权上构建,并由15个双电路,单轴单轴镀锌钢杆和两个双电路镀锌钢2杆结构,利用三相双键双捆扎的768.2 ACS/TW类型的夏季转换能力,1,1,1,5157.1574,和
摘要:传统的认知科学作为一种跨学科的研究方法,主要采用实验、归纳、建模和验证范式,而这些模型有时并不适用于信息物理社会系统(CPSS),因为该系统中的大量人类用户涉及严重的异质性和动态性。为了减少以人为中心的系统中人与机器之间的决策冲突,我们提出了一种称为并行认知的新研究范式,该范式利用智能技术体系分三个阶段研究认知活动和功能:基于人工智能认知系统(ACS)的描述性认知、通过计算审议实验的预测性认知和通过并行行为处方的规范性认知。为了使这些阶段不断在线迭代,我们进一步提出了一种基于心理模型和用户行为数据的混合学习方法来自适应地学习个体的认知知识。在城市出行行为处方和认知视觉推理两个代表性场景上的初步实验表明,我们的并行认知学习对于人类行为处方是有效可行的,从而可以促进复杂工程和社会系统中的人机合作。
摘要 近几年来,人们对用于太空应用的多功能可重构阵列的兴趣日益浓厚,并提出了几种针对不同任务需求的概念。然而,尚未找到一个引人注目的应用来证明其相对于传统系统更高的成本和复杂性是合理的。本文提出了一种用于小型可重构航天器的姿态控制系统 (ACS) 的设计新方法。它将利用多体阵列模块相对于彼此旋转产生的动量守恒内部扭矩。目标是相对于最先进的 ACS 实现更好的效率、准确性和稳健性性能,这是小型航天器技术的瓶颈。本文研究了使用内部关节扭矩控制姿态的平面多体阵列的特征行为。为此,将展示和讨论相关的重新定向轨迹。参照该领域的先前研究,讨论了考虑模块撞击的最佳姿态控制轨迹,并从物理和数学角度详细解释了动量保持机动的动力学。结果表明,该概念有待进一步发展。