参考文献 • Crow YJ。Aicardi-Goutieres 综合征。2005 年 6 月 29 日 [2016 年 11 月 22 日更新]。引自:Adam MP、Feldman J、Mirzaa GM、Pagon RA、Wallace SE 和 Amemiya A,编辑。GeneReviews(R) [Internet]。西雅图 (WA):华盛顿大学,西雅图;1993 - 2025 年。可从 http://www.ncbi.nlm.nih.gov/books/NBK1475/ PubMed 引文获取 (https://pubmed.ncbi.nlm.nih.gov/20301648) • Fisher AJ、Beal PA。根据 ADAR-RNA 结构预测 Aicardi-Goutieres 综合征突变的影响。RNA Biol。2017 年 2 月;14(2):164-170。 doi:10.1080/15476286。2016.1267097。2016 年 12 月 12 日电子版。PubMed 上的引用(https://pubmed.ncbi.nlm.nih .gov/27937139)或 PubMed Central 上的免费文章(https://www.ncbi.nlm.nih.gov/pm c/articles/PMC5324757/)• Hayashi M、Suzuki T。遗传性对称性色素异常。J Dermatol。2013 年 5 月;40(5):336-43。doi: 10.1111/j.1346-8138.2012.01661.x。 Epub 2012 年 9 月 14 日。PubMed 上的引用 (https://pubmed.ncbi.nlm.nih.gov/22974014) • Heraud-Farlow JE、Walkley CR。ADAR1 的 RNA 编辑在预防自身 RNA 的先天免疫感应中的作用。J Mol Med (Berl)。2016 年 10 月;94(10):1095-1102。doi: 10.1007/s00109-016-1416-1。Epub 2016 年 4 月 5 日。PubMed 上的引用 (https://pub med.ncbi.nlm.nih.gov/27044320) • Liddicoat BJ、Chalk AM、Walkley CR。ADAR1、肌苷和免疫感应系统:区分自身和非自身。Wiley Interdiscip RNA 综述。 2016 年 3 月至 4 月;7(2):157-72。doi:10.1002/wrna.1322。2015 年 12 月 21 日电子版。PubMed 上的引用(https://pubmed.ncbi.nlm.nih.gov/26692549)• Pestal K、Funk CC、Snyder JM、Price ND、Treuting PM、Stetson DB。RNA 编辑酶 ADAR1 的同工型独立控制核酸传感器 MDA5 驱动的自身免疫和多器官发育。免疫。2015 年 11 月 17 日;43(5):933-44。doi:10.1016/j.immuni.2015.11.001。 PubMed 上的引用 (https://pubmed.ncbi .nlm.nih.gov/26588779) 或 PubMed Central 上的免费文章 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654992/) • Rice GI、Kasher PR、Forte GM、Mannion NM、Greenwood SM、Szynkiewicz M、Dickerson JE、 Bhaskar SS、Zampini M、Briggs TA、Jenkinson EM、Bacino CA、BattiniR、Bertini E、Brogan PA、Brueton LA、Carpanelli M、De Laet C、de Lonlay P、delToro M、Desguerre I、Fazzi E、Garcia-Cazorla A、Heiberg A、Kawaguchi M、Kumar R、Lin JP、Lourenco CM,男AM,马克斯·W Jr、Mignot C、Olivieri I、Orcesi S、Prabhakar P、Rasmussen M、Robinson RA、Rozenberg F、Schmidt JL、Steindl K、TanTY、van der Merwe WG、Vanderver A、Vassallo G、Wakeling EL、Wassmer E、
subμm光刻发展至少可以追溯到1983年,并于1986年进行了审查,当时该领域仍处于大学研究状态[2]。目标是实现具有尖锐侧壁的二维模式,其尖锐的侧壁明显小于常规光学方法的可能性,这些光学方法被光的波长确定和限制。不仅考虑了光孔构成重要的方法,而且还考虑了光孔本身产生所需模式的能力。在上述出版物中回顾了几种用于生成光刻图像的方案 - 光影影像学,接触光刻,全息光刻,电子束光刻,X射线光刻和离子光刻。强度降解
Cold Spring Harbour实验室出版社于2025年2月24日 - 由RNAJournal.cshlp.org出版,从
小球形头足动物通过腺苷脱氨基表现出异常广泛的mRNA,但尚不清楚基本机制。由于作用于RNA(ADAR)酶的腺苷脱氨酶会催化这种形式的RNA编辑,因此头足类直系同源物的结构和功能可能会提供线索。最近的基因组测序项目提供了蓝图,以全面互补。我们实验室的先前结果表明,Squid表达了一个ADAR2同源物,具有两个名为SQADAR2A和SQADAR2B的剪接变体,并且这些消息经过广泛编辑。基于章鱼和鱿鱼基因组,转录组和cDNA克隆,我们发现在小卵形中表达了另外两个ADAR同源物。第一个与脊椎动物ADAR1直系同源。与其他ADAR1不同,它包含一个新型的N末端结构域,为641 AA,预测为无序,包含67个磷酸化基序,并且具有氨基酸组成,丝氨酸和碱性氨基酸的氨基酸组成异常高。编码sqadar1的mRNA本身是广泛编辑的。也存在于任何脊椎动物同工型的直系同源的sqadar/d-like酶。编码SQADAR/D类的消息未编辑。使用重组SQADAR的研究表明,仅在完美的双链dsRNA和鱿鱼钾通道mRNA底物上,只有SQADAR1和SQADAR2是活跃的腺苷脱氨酶。sqadar/d样对这些底物没有活性。对这些底物没有活性。总体而言,这些结果揭示了SQADARS中的一些独特特征,这些特征可能会导致头足类动物中观察到的高级RNA回收。
冷泉港实验室出版社 2025 年 2 月 18 日 - 由 rnajournal.cshlp.org 下载自
作用于 RNA 的腺苷脱氨酶 (ADAR) 可以重新用于实现位点特异性的 A-to-I RNA 编辑,方法是通过 ADAR 招募向导 RNA (adRNA) 将它们招募到感兴趣的靶标上。在本章中,我们详细介绍了通过两种正交策略实现此目的的实验方法:一是通过招募内源性 ADAR(即已经在细胞中天然表达的 ADAR);二是通过招募外源性 ADAR(即将 ADAR 递送到细胞中)。对于前者,我们描述了使用环状 adRNA 将内源性 ADAR 招募到所需的 mRNA 靶标上。这可在体外和体内实现稳健、持久且高度转录特异性的编辑。对于后者,我们描述了使用 split-ADAR2 系统,该系统允许过度表达 ADAR2 变体,可用于以高特异性编辑腺苷,包括难以编辑非优选基序中的腺苷,例如 5′ 鸟苷两侧的腺苷。我们预计所述方法应促进研究和生物技术环境中的 RNA 编辑应用。
体外表征 ADAR 异构体的 RNA 编辑特异性和体外表征 ADAR 异构体的 RNA 编辑特异性和脱氨酶结构域
随着单细胞转录组的可用性不断提高,RNA 特征为靶向活细胞提供了有希望的基础。分子 RNA 传感器将能够在不同情况下研究和治疗干预特定细胞类型/统计数据,特别是在人类患者和非模型生物中。在这里,我们描述了一种使用作用于 RNA 的腺苷脱氨酶 (RADAR) 进行活体 RNA 传感的模块化和可编程设计。我们验证并扩展了我们的基本设计,表征了其性能,并彻底分析了其与人类/小鼠转录组的兼容性。我们还确定了进一步提高输出水平和改善动态范围的策略。我们表明 RADAR 是可编程和模块化的,并且独特地支持紧凑的 AND 逻辑。除了定量之外,RADAR 还可以区分与疾病相关的点突变。最后,我们证明 RADAR 是一个独立的系统,具有在各种生物体中发挥作用的潜力。
Invertau配备了两个检测器端口和两个激发端口,允许用户进行各种FLIM方法,包括两光激发。Horiba的剪切时间相关的单光子计数(TCSPC)FIPHO时正时电子设备能够解决寿命范围从<15 picseconds到秒。invertau能够将寿命从〜50ps到10的NS,扫描(如果单点),同时无缝地使用我们的Deltadiode激光菜单。invertau也与第三方激光器兼容。