摘要:自体脂肪转移在治疗纤维化皮肤疾病,逆转疤痕和僵硬以及改善生活质量方面显示出希望。这些移植物中的脂肪衍生的干细胞(ADSC)被认为对这种作用至关重要,尤其是它们的分泌因素,尽管特定机制尚不清楚。本研究研究了体外纤维化,炎症和低氧性调节后ADSC的转录组变化。高通量基因表达测定在暴露于IL1-β,TGF-β1和缺氧的ADSC上以及胎儿牛血清(FBS)的培养基中。流式细胞术表征了ADSC。RNA-SEQ分析揭示了条件之间不同的基因表达模式。 FBS上调的途径与细胞周期,复制,伤口愈合和骨化有关。 IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。 TGF-β1治疗上调伤口愈合和肌肉组织发育途径。 缺氧导致线粒体和细胞活性的下调。RNA-SEQ分析揭示了条件之间不同的基因表达模式。FBS上调的途径与细胞周期,复制,伤口愈合和骨化有关。IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。 TGF-β1治疗上调伤口愈合和肌肉组织发育途径。 缺氧导致线粒体和细胞活性的下调。IL1-β诱导的免疫调节途径,包括粒细胞趋化性和细胞因子的产生。TGF-β1治疗上调伤口愈合和肌肉组织发育途径。缺氧导致线粒体和细胞活性的下调。
摘要:脂肪组织(AT)是一个大而重要的储能器官,并且是在许多过程中具有关键作用的内分泌器官。此外,AT是当今用于所有类型的组织再生的巨大且易于获取的多能细胞类型的来源。在组织工程中使用脂肪衍生的干细胞(ADSC)分化为其他类型的细胞,例如内皮细胞(ECS),血管平滑肌细胞或心肌细胞,以促进/刺激血管生成过程。作为未来成功临床应用的关键,工程组织中的功能性血管网络是许多体内和实体研究的目标。本文回顾了ADSC的血管生成潜力,并探讨了它们在组织工程领域(TE)的能力。
背景:重大烧伤的患者与结晶和胶体的组合复苏。在烧伤复苏期间,还可以将新鲜的冷冻血浆(FFP)作为辅助性胶体溶液燃烧的患者(TBSA)燃烧。FFP可能会减少与大型TBSA烧伤相关的内皮功能障碍。此外,FFP可能通过影响脂肪衍生的干细胞释放的细胞因子水平(ADSC),特别是细胞因子VEGFF-A来改变患者的炎症状态。这项研究旨在研究FFP对烧伤患者VEGF-A水平的作用。方法:在IRB批准后,在初次手术期间从成年患者中收集脂肪组织。ADSC。荧光激活的ADSC的单细胞分选(FACS),以确定CD105,CD90和CD73抗体的纯度。ADSC在标准组织培养条件下生长,并收集上清液进行细胞因子分析。使用线性回归分析数据,以将FFP的总量与VEGF-A水平绘制总量以及Spearman相关性。结果:这项研究纳入了燃烧后36小时内接受FFP的14名患者。给出的FFP量为258-3186毫升,平均为1465±715 ml。这些患者的平均TBSA为42±22%,平均患者年龄为53±16岁。未来的研究需要增加样本量以支持这一发现。线性回归和Spearman相关性均显示出FFP量之间的中等强度相关性(r = -0.5758和Spearman系数= -0.433)。结论:VEGF-A先前已被证明在血管生成中起作用,这可以增加炎症细胞浸润并导致内皮细胞功能障碍。接受较高FFP水平的患者与较低水平的VEGF-A相关,表明较高剂量的FFP和降低的内皮细胞功能障碍之间可能存在相关性。
干细胞生物学以及再生医学的相关领域涉及在包括骨髓和脂肪组织在内的多种组织中存在的多能干细胞。研究表明,1克脂肪组织产生约5 x 10 3的干细胞,其比1克骨髓中的间充质干细胞数量高出500倍。[1]干细胞由于其多能性和无限能力的自我更新能力,为组织工程和重建程序的进步提供了希望。脂肪组织尤其代表了脂肪衍生的干细胞(ADSC)的丰富且易于接近的来源,该来源可以沿多个中胚层谱系区分。[1] ADSC可以允许从另一个部位转移后改善移植物存活和新的脂肪组织的产生。
摘要简介:伤口愈合是再生医学中的主要治疗问题。目前的研究旨在使用大鼠脂肪衍生的干细胞(ADSC)和锰纳米颗粒(MNO 2 –NPS)在多氨基酯/明胶型福特蛋白静电传播纳米纤维中研究大鼠的二级烧伤治疗。方法:在合成纳米颗粒和纳米纤维的静电纺丝之后,执行了SEM分析,接触角,机械强度,血液兼容性,孔隙率,肿胀,生物降解性,细胞活力和粘附测定。根据结果,pCl/凝胶/5%MNO 2 -NPS纳米纤维(MN -5%)被确定为最合适的支架。ADSC种子的MN-5%支架被用作烧伤伤口敷料。测量了伤口闭合率,IL-1β和IL-6水平,羟基丙烯和糖胺聚糖含量,并测量了苏氧化含量和曙红,Masson的毛状体和免疫组织化学染色。与对照组相比,纳米纤维)和N+S(ADSCS+PCL/凝胶纳米纤维)组,IL-6和IL-1β水平降低,伤口闭合,糖胺聚糖和羟基丙烯含量的百分比增加了(p <0.05)。此外,在这两组中观察到了最低的α-SMA量,证明了干细胞在降低α-SMA水平并因此预防纤维化的作用。此外,Mn+S组中α-SMA的量低于N+S组的α-SMA量,并且更接近健康的皮肤。根据组织学结果,在MN+S组中观察到了最佳的治疗类型。结论:总而言之,ADSC种子PCL/凝胶/5%MNO 2 -NPS支架在烧伤伤口愈合中表现出相当大的治疗作用。
•微小的货物具有内部数据,支持使用牛奶外泌体来促进伤口愈合并增加受伤和发炎的皮肤组织的摄取。最近的出版物显示受伤的皮肤组织的摄取大于10倍(Marsh等,2025)。•Lai等人的研究。(2015)证明,MSC衍生的外泌体在糖尿病小鼠中加速了伤口愈合,通过增强上皮化和胶原蛋白沉积,支持伤口部位的组织再生。(•Zhang等人,2015年,还表明,人类脂肪衍生的干细胞(ADSC)外泌体改善了各种动物模型的皮肤再生和愈合。源自ADSC的外泌体可以增强血管生成和皮肤组织的修复,这对于伤口愈合至关重要。•Lee等人。报告说,来自人皮肤成纤维细胞的外泌体通过增加胶原蛋白合成并促进皮肤再生,从而增强皮肤再生。这表明外泌体可能有助于减轻衰老的迹象,例如皱纹和皮肤弹性的损失(。
在临床应用中推进生物打印的血管移植物面临的挑战是获得足够的功能性内皮细胞和对血管生物结构至关重要的平滑肌细胞。这些细胞的准确放置对于最佳性能至关重要。组织工程,尤其是脂肪衍生的干细胞(ADSC),提供了有希望的解决方案。在这种方法中,使用VEGF-165PODS®(多面腺蛋白输送系统)在体外培养ADSC并分化为内皮细胞(DECS),而平滑肌细胞(DSMC)在原位使用TGF-β1poctir with BioOATT与BioOATT的3D Bioprint Beaster在原位区分了3D Bioprinted Weastel的外层。PODS®对分化内皮细胞(DECS)和平滑肌细胞(DSMC)的产生的影响通过流式细胞仪,免疫细胞化学染色和RT-PCR验证,并使用细胞特异性标记物以及用于细胞外胶原蛋白I和弹性蛋白的免疫标记。这证实了血管壁中的细胞保留其表型并分泌的人类外基质(ECM)成分。扫描电子显微镜(SEM)证实了血管的形态和尺寸,拉伸测试和爆发压力测试评估了机械性能。通过血液兼容性和CAM(Evo ovo shorioallantoic膜)测定法评估了体内兼容性。结果证实了具有平滑肌细胞和内皮衬里的双层血管结构的成功制造,具有足够的生理特性。血流相容性和体内CAM分析表明,血小板粘附力低,生物相容性提高和血管生成特性。这些发现表明,用于3D生物打印的ADSC和Bioink集成为制造功能性小直径血管移植物提供了一种实用解决方案。这项研究通过干细胞的组合国家,生长因子输送系统和生物打印技术来推进血管组织工程。
SUTD 研究团队与 Xjera Labs 和高级数字科学中心 (ADSC) 合作,着手开发 Estate-IQ,这是一种先进的人工智能 (AI) 系统,可以支持 HDB 和其他利益相关者实现事件管理自动化、优化维护制度和资源,以及改进数据处理。这个新项目的最终目标是使用最先进的 AI 技术为居民提供更好的 HDB 房地产服务。SUTD 团队由 ISTD 教职员工组成,包括副教授 Chen Binbin(SUTD 负责人)、Tony Quek 教授、David Yau 教授、助理教授 Dinh Tien Tuan Anh、助理教授 Lim Kwan Hui、助理教授 Soujanya Poria 以及 Foo Siang Chi 先生(OCIF)。
干细胞(SC)治疗通过利用源自脂肪组织和骨髓的SC的再生能力来革新整形手术领域,以增强组织修复并增强美学结果。这种开创性方法增强了诸如脂肪嫁接,面部恢复和伤口愈合之类的程序。随着研究的进展,SC治疗显示了在重建和整容手术中更复杂使用的潜力。本综述的目的是全面研究整形手术领域内SC治疗的进步,突出其当前的应用并探索未来的方向。对整形外科治疗的系统审查遵循系统审查和荟萃分析(PRISMA)指南和特定搜索标准的首选报告项目。这项系统评价强调了这些主要结果,整形外科中的SC疗法通过利用间质SC(例如脂肪衍生的SCS(ADSC)(ADSC)和骨骨髓衍生的SC(BMSC)(BMSC),可增强组织修复和美学结果,并提供血小板富含血小板的血清(PRP)。技术(例如脚手架和细胞重编程)用于指导SC的生长,从而实现了量身定制的组织工程,以进行复杂的再生程序。这种创新方法可以加速愈合,减少重建手术的疤痕,改善皮肤质地并确保治疗区域的自然整合,最终产生增强的美学结果并改变面部再生过程。SC在整形手术中的治疗具有很大的希望,但仍需要解决诸如协议标准化,成本和法规之类的挑战。SC疗法在整形手术方面取得了领先的进步,为患者提供了卓越的结果和改善的生活质量。有趣的是,整形手术的未来专注于将SC疗法整合为个性化和变革性治疗。此外,生物工程师,临床医生和监管机构之间的跨学科合作对于克服挑战并将SC研究推向临床实践至关重要。
结果:在体外培养的人ADSC脱细胞后获得ADSC-DECM。Western印迹,ELISA和质谱结果表明,ADSC-DECM包含各种生物活性分子,包括胶原蛋白,弹性蛋白,层粘连蛋白和各种生长因子。cck-8和刮擦测定法表明,ADSC-DECM治疗可以显着促进HACAT,人脐静脉内皮细胞和人纤维细胞的增殖和迁移。为了评估体内伤口愈合的治疗作用,我们开发了一种新型的ADSC-DECM-CMC贴片,并将其移植到小鼠全厚性皮肤伤口模型中。我们发现ADSC-DECM-CMC贴片处理显着加速了伤口的闭合。进一步的组织学和免疫组织化学表明,ADSC-DECM-CMC斑块可以促进组织再生,这是通过增强的血管生成和高细胞增殖活性确认的。