委员会今天通过了该报告和命令。太空补充覆盖框架允许与地面服务提供商合作的卫星运营商寻求 FCC 授权,在目前分配给无线服务的某些许可、灵活使用频谱上运营空间站,前提是他们满足某些许可先决条件——包括在指定地理区域内从地面许可证持有者那里获得频谱租赁。获得授权后,卫星运营商便可以为无线提供商的客户提供服务,如果他们需要在覆盖区域之外进行连接。例如,太空补充覆盖可以在奇瓦瓦沙漠中部、密歇根湖、夏威夷哈纳高速公路、100 英里荒野或尤因塔山脉提供服务。
会话描述:随着半导体技术接近缩小范围的局限性,对传统冯·诺伊曼建筑的替代方案的需求也会增长。神经形态计算,受人脑的结构和功能的启发,是一种有希望的解决方案,尤其是用于开发智能系统,例如视觉处理器,听觉系统和机器人运动。设备技术,电路设计和计算建模的最新突破使联合研究人员来自不同的领域,包括电子,计算机科学,神经科学,材料科学和设备制造。这些相互交流的旨在为人工智能(AI)应用(AI)应用和神经形态硬件创建更有效的电子系统,而与传统CMOS相比,它更准确地复制了生物神经网络。将备忘录集成到设计工具包中有望将进步推向摩尔定律,从而开发可以感知的智能,多功能系统,
后来在R. G. Shandil教授上,K。C。Sharma博士,M。G。Gorla教授和Kirti Prakash教授也加入了该系。该系的一位教师M. B. Banerjee教授于1988年获得了享有声望的Shanti Swaroop Bhatnagar奖。S. N. Dube教授,M。B。Banerjee教授和R. C. Sharma教授已获得国家科学院的奖学金。每年有50多名学生被录取给P.G.数学学位。多年来,有200多名学生完成了博士学位。数学学位和200多名学生已成功授予M. Phil。大学的数学学位。 由于其众多国家和国际大学的数学学位。由于其众多国家和国际
咪唑是一种五元的杂环化合物,由于其在各种科学领域中的独特化学特性和多功能性而具有显着的突出性。本文探讨了咪唑及其衍生物的合成方法,物理化学特性和广泛的应用。药物化学,催化和材料科学的最新进展突出了该化合物在学术研究和工业应用中的关键作用。重点放在其药理潜力上,包括抗菌,抗真菌和抗癌活性及其在协调化学和先进材料开发方面的效用。
引言微囊化是一种高级技术,用于包含保护性壳或涂层内的活性成分,例如药物,营养素,口味或香料。此过程增强了封装物质的稳定性,受控释放和生物利用度。这涉及使用各种方法,例如共凝聚,喷雾干燥,溶剂蒸发或挤出来创建微观胶囊,通常是在纳米微米的尺度上。微囊化的主要目的是保护敏感物质免受热,水分或光的环境因素的侵害,从而使它们降解。它还允许随着时间的推移而受控释放活性成分,从而改善了诸如药品,食物,化妆品和农业等应用中的特定领域。此外,微包装有助于掩盖不愉快的口味或气味,并可以改善某些材料的处理。在最近的进步中,开发了胶囊的更复杂和可生物降解的材料,例如
由于地处偏远、物流复杂且易受环境不确定性影响,海上能源作业面临着独特的挑战。物联网 (IoT) 的最新进展彻底改变了供应链分析,通过动态数据驱动的决策实现了敏捷和弹性运营。本评论探讨了物联网技术通过整合实时监控、预测分析和自动化在增强海上能源供应链方面的变革性作用。智能传感器、RFID 系统和边缘计算等关键组件促进了实时数据收集和处理,提高了可视性、跟踪和资源优化。物联网与人工智能 (AI)、机器学习、区块链和数字孪生等新兴技术的集成进一步增强了运营弹性。预测性维护和远程监控系统通过在设备故障发生之前识别来最大限度地减少停机时间,而人工智能驱动的分析则优化了库存和调度流程。区块链确保数据安全和透明度,数字孪生支持风险评估和灾难恢复规划的情景测试。尽管取得了这些进展,但网络安全风险、可扩展性问题和法规遵从性等挑战仍然是广泛采用的重大障碍。展望未来,边缘 AI、5G 网络和自主系统等创新有望进一步增强物联网驱动的分析能力,为海上能源运营提供可持续且适应性强的解决方案。本评论提供了有关如何克服实施挑战以及利用物联网技术在海上能源环境中构建敏捷、有弹性且面向未来的供应链的见解。最后,它提出了行业采用和未来研究的建议,强调了物联网在塑造海上能源物流未来方面的作用。
关于 NIT CALICUT 卡利卡特国立技术学院 (NITC) 是 2007 年 NIT 法案管辖的 31 所国家级重要机构之一,由印度政府全额资助。该学院最初成立于 1961 年,是一所地区工程学院 (REC),2002 年改组为国立技术学院。该学院提供工程、科学、技术和管理方面的学士、硕士和博士学位课程。通过与众多研究组织、学术机构和行业的积极合作,该学院在 NIT 体制下树立了新的运作风格。该学院目前提供 11 个本科课程和 30 个研究生课程以及工程、科学技术和管理等各个领域的博士学位课程;http://www.nitc.ac.in
服用药物的最明智,最安全,最自然的方法是通过嘴。将在本文中介绍用于解决患者合规性,药物释放,吸收和整体功效问题的最新材料和技术。由于其出色的患者合规性,可移植性,稳定性和处理的便利性,因此片剂是最常用的固体口服剂量。随着时间的流逝,片剂技术已取得了长足的进步。这项工作旨在阐明平板电脑赋形剂,生产程序,分析方法以及设计质量的进步。术语“剂型”描述了药物的物理形状,例如固体,液体或气体,可以适当地给予某些身体部门。制造也受益于较短的处理期,尤其是对于平板电脑剂型的共同处理的多功能现成的赋形剂。为增强产品和过程的性能,已经创建了砂油技术的新进步,例如反向湿,热粘附,蒸汽,蒸汽,融化,冻结,泡沫,潮湿和气动干燥肉芽。此外,已经使用了多种粒子工程方法,例如共沉淀,热融化,挤出量化,用于创建强大的片剂配方。