增材制造的兴起迅速扩大了拓扑设计和低生产能力的灵活性。激光粉末床熔合中逐层沉积的一个不幸副产品是引入了大缺陷,大大降低了最终部件的机械性能。打印和检查方法严重依赖机构知识,导致材料和能源浪费,限制了增材制造技术的采用。然而,工艺参数空间的许多改进减少了缺陷的数量。气孔虽然尺寸很小,但仍然存在,并且特别不利于疲劳寿命,因为它是优先裂纹起始点。我们的工作重点是了解这些工艺引起的缺陷在增材制造金属中的作用,特别是它们对机械行为的影响。利用这些见解,我们探索了传统和非传统方法来增强增材制造的组件。这些方法是继续认证它们在关键条件下的使用所必需的。演讲者简介:
OAR 拥有设备精良、人员配备精良的实验室和野外基地,由空军科学家负责指导,这些科学家从事的研究领域最有可能促进空军持续的技术发展。虽然 OAR 主要关注获取新的基础知识,但其始终强调将研究项目的结果应用于提高空军的能力。OAR 的任务是通过实验室内部研究来完成的,并通过拨款和合同在大学和工业实验室进行研究。OAR 前副指挥官 Ernest A. Pinson 准将于 1965 年 10 月成为该组织的新任指挥官,此前,Don R. Ostrander 少将自 1962 年 9 月起担任 OAR 指挥官,现已退休。Pinson 将军拥有罗彻斯特大学医学生理学博士学位,并已完成加州大学核物理学专业的所有要求,在目前的职位上拥有 27 年的空军研究和开发经验。尽管 OAR 有 10 个下属部门,分布在美国各地和两个国家,但其大部分资源都集中在其中三个部门。其中最大的是位于马萨诸塞州贝德福德劳伦斯 G. 汉斯科姆场的空军剑桥研究实验室 ( AFCRL)。该实验室雇用了 OAR 一半以上的人力,专门研究环境科学(涉及地球、大气和太空)和电子学。1966 财年,AFCRL 科学家研究了各种各样的课题,从初步的空中重力测量和冷雾分散技术的开发,到改进的计算机流程和新的天线设计。AFCRL 的科学家开发并验证了一种回收和再利用昂贵研究气球的新方法,在气球开发领域取得了首创。第二个组成部分,也是 OAR 的另一个主要内部实验室综合体,位于俄亥俄州赖特帕特森空军基地的航空航天研究实验室 ( ARL ),专注于物理和工程科学研究。在这些领域,ARL 正在进行的研究包括推进、超音速风洞技术、固态物理和数学。在过去的一年里,ARL 科学家在电流体动力学 (EFD) 过程领域进行了研究。这些过程为未来的太空动力系统带来了巨大的希望,该系统将使用直接能量转换过程,而不使用移动机械部件来发电。另一个显示出巨大希望的发展领域是开发一种可用于军用涡轮驱动车辆的高效惯性粒子分离器。开发这种颗粒分离器可延长发动机寿命,这一点尤其重要
数字孪生有望减少对物理原型的需求,优化设计,并帮助使产品更智能、更互联、更可持续。它们有可能成为从概念到生产再到服务(整个产品生命周期)的单一事实来源。这是航空航天和国防工业的一项变革性技术,以创纪录的速度推动创新。但采用数字孪生的过程可能令人生畏。数字孪生的基本组成部分:模拟、高性能计算 (HPC) 和数据需要打破它们的孤岛,融合它们的流程,并实时利用它们围绕资产的协作。
摘要 俄罗斯和乌克兰之间的战争持续了很长时间,并引发了各国之间的制裁。咄咄逼人的俄罗斯决定关闭许多国家的领空,这一政策让世界回到了冷战时期的类似情况。本文旨在回答以下问题:俄罗斯领空关闭对航空业和世界经济有何影响?通过使用现实主义和结构功能主义方法,这项研究表明,俄罗斯的行动是为了阻止其他支持乌克兰的国家。因此,这清楚地表明,现有的国际机构及其国际法确实未能应对国家(俄罗斯)采取激进行动并制止其在国际交往中的不当行为的倾向。关键词:冲突、领空关闭、航空业、全球影响 介绍 谁会想到在 Covid-19 造成巨大破坏之后
ISA-WELD® ISA-WELD® 电阻器由实心电子束焊接复合材料冲压而成,该复合材料由铜和我们的电阻合金之一(例如 MANGANIN ® 或 ZERANIN ®)组合而成。电阻器可通过冲压和弯曲进行调整,以适应几乎任何形状和应用。铜端子的输入电阻相对较低,热导率高,储热能力强,分流器内的电流密度和散热量也高,这些优点还体现在以下方面。ISA-WELD ® 分流器特别适用于极低欧姆值(在 0.5 至 5 mOhm 范围内)。它们可用作 SMD 或母线组件。
在铝加工领域,需要更大的加工量,功率超过 100 kW,转速超过 30,000 rpm,进给速度超过 50 m/min,也需要更强大的刀具。 。结构部件的加工率高达 95%,金属去除率超过 10,000 cm3/min(相当于 27 kg/min 左右),选择合适的加工刀具是降低部件生产成本的决定性因素在航空航天工业中。因此,为了在竞争中脱颖而出,对切削几何形状和硬质合金基体的最高要求至关重要。 Ingersoll 为您提供这些使用可转位刀片和整体硬质合金刀具进行粗加工和精加工的刀具。
预测未来始终是一项挑战,在我们生活的这个快速发展的世界里,预测未来更是难上加难。24 小时新闻周期似乎已被以分钟为单位的即时社交媒体反馈所取代。不过,在这期特刊中,结合即将于 11 月 29 日至 30 日举行的 RAeS“2035 年及以后的航空航天”会议,我们试图预测未来 15 年内民用航空航天领域的一些发展。环境和可持续性成为航空业面临的最大挑战,这一点毫不奇怪,但解决方案多种多样,从飞艇到 eVTOL,从更好的空气动力学到 SAF。然而,也有大惊喜。或许最重要的一点是,15 年前,人们认为庞巴迪、巴西航空工业公司、三菱、苏霍伊、联合航空和中国商飞等新进入者将成功从空客和波音的垄断下夺取利润丰厚的客机市场。如今,这两大垄断企业仍然是“最后的飞机制造商”,并主导着民航市场。庞巴迪现已退出该领域,其 CSeries 已成为空客 A220。巴西航空工业公司似乎满足于降低预期并接受 ATR,而日本在该地区的希望 MRJ 却一事无成。与此同时,由于入侵乌克兰,俄罗斯联合航空工业公司现在面临着不确定的、孤立的未来,只能为俄罗斯国内的小市场提供客机。最后,中国曾被视为
