作为您的新任 HPC 中心副主任,首先,我要感谢我们的主任 John West 为我提供这次为该计划服务的机会,并感谢我的前任 Bobby Hunter 在任职期间为 HPCMP 所做的贡献。Bobby 对中心的管理堪称典范,毫无疑问,他将继续以 ERDC DSRC 主任的身份继续出色工作。在为该计划服务了 17 年后,我很荣幸也很兴奋能够担任这一职务,与我们的用户、中心以及该计划的许多组成部分合作,共同完成 HPCMP 的使命和目标。HPC 系统采购和部署是一项复杂的业务,我们已经开始了一项新流程,以确保我们的用户尽快获得最好、最新的超级计算机。该新工艺用于技术插入 (TI) 工艺,TI-13 为 AFRL 和海军 DSRC 带来了三套新型 Cray XC30 系统,总性能达到 2.7 petaFLOPS:
约翰·伯克博士 - 2022 年 3 月,担任国防部研究与工程部副部长办公室 (OUSD (R&E)) 量子科学首席主任 (OUSD (R&E)) 量子科学首席主任。担任此职务期间,伯克博士负责领导国防部 (DoD) 的量子科学战略,量子科学是国防部最重要的关键技术领域之一。在加入 OUSD (R&E) 之前,伯克博士于 2017 年至 2022 年期间担任国防高级研究计划局 (DARPA) 微系统技术办公室 (MTO) 和国防科学办公室 (DSO) 的项目经理。在 DARPA,他管理了七个开发量子科学和技术的项目。其中一些项目推动了量子传感器的发展,包括原子干涉仪、原子钟、磁力仪和射频 (RF)“量子孔径”,并将这些传感器应用于定位、导航和授时 (PNT)、生物技术以及射频频谱的新功能。有几个项目推动了基于超导和光子平台的量子计算量子比特技术。这项工作促使国防部的几项技术向更高成熟度的开发项目转变,他因此获得 DARPA“结果至关重要”奖。此前,Burke 博士曾在空军研究实验室 (AFRL) 空间飞行器理事会担任高级研究物理学家。在那里,Burke 博士领导一个研究团队开发原子钟、光学时间传输和冷原子测量技术,以用于全球定位系统等空间应用。他为包括国际空间站的 NASA 冷原子实验室和导航技术卫星 -3 在内的太空实验做出了贡献。 Burke 博士因其贡献、多篇出版物和专利而荣获 AFRL 早期职业奖和 R-NASA 国家太空成就奖。Burke 博士拥有中央学院物理学理学学士学位和弗吉尼亚大学物理学哲学博士学位。他的论文是关于使用来自 Bose Einstein 凝聚态的引导物质波进行原子干涉测量,该论文获得了弗吉尼亚大学科学与工程奖学金优秀奖。
这份报告是航空航天公司的 Mike Vanik 多年来征集的。由于他的坚持、耐心和最终的赞助,这份报告最终得以编写,以造福卫星项目。本文包含的许多主题都是从早期的报告、对话和与来自航空航天公司、AFRL、NASA 和业界的许多作者同事的深思熟虑的讨论中转述的——太多了,无法在此一一介绍。可以说,在一个充满活力的卫星工程社区中工作是有价值的,并且值得的,该社区致力于改进用于适当设计太空飞行器的工具和方法。第 4.5 节的灵感来自与 LANL 的 Jeff George 的对话。我们特别感谢前 NASA 的 Mike Xapsos 提供附录 A 中包含的 ESP 置信度,感谢航空航天公司的 Joe Wehlburg 和 Scott Schnee 对本文的支持,感谢航空航天公司的 Kristopher Heick 提醒我们注意空客原子氧工具 ATOMOX。
这份报告是航空航天公司的 Mike Vanik 多年来征集的。由于他的坚持、耐心和最终的赞助,这份报告最终得以编写,以造福卫星项目。本文包含的许多主题都是从早期的报告、对话和与来自航空航天公司、AFRL、NASA 和业界的许多作者同事的深思熟虑的讨论中转述的——太多了,无法在此一一介绍。可以说,在一个充满活力的卫星工程社区中工作是有价值的,并且值得的,该社区致力于改进用于适当设计太空飞行器的工具和方法。第 4.5 节的灵感来自与 LANL 的 Jeff George 的对话。我们特别感谢前 NASA 的 Mike Xapsos 提供附录 A 中包含的 ESP 置信度,感谢航空航天公司的 Joe Wehlburg 和 Scott Schnee 对本文的支持,感谢航空航天公司的 Kristopher Heick 提醒我们注意空客原子氧工具 ATOMOX。
美国政府 从美国政府方面来看,国防创新部门(DIU)目前正在开展轨道前哨和多轨道后勤飞行器(m-OLV)项目。空军研究实验室(AFRL)正在研究与为小型航天器加油有关的技术。空军空间与导弹系统中心(SMC)正在研究未来国家安全空间(NSS)卫星的加油问题。美国已经制定了国家 OSAM 计划,其中将包括对国防部(DOD)、民用和情报机构很重要的要素和能力。目前正在讨论几个“全政府”主题,包括标准制定、技术开发和原型设计,强调需要通过增加高级需求语言和制定接口标准,开始为目前处于或即将进入开发周期的卫星做好准备,以便将来为其提供服务。
总主席:F. Patrick McCluskey,马里兰大学技术委员会:Brianna Klein,桑迪亚国家实验室 | Emad Andarawis,通用电气全球研究中心 | David Shaddock,通用电气全球研究中心 | Liangyu Chen,俄亥俄航空航天研究所/美国国家航空航天局 | Katherine Burzynski,美国空军研究实验室 | Brendan Hanrahan,美国陆军研究实验室 | Andrew Wright,桑迪亚国家实验室概述:HiTEC 2025 延续了提供领先两年一度会议的传统,致力于推动和传播高温电子行业的知识。在国际微电子组装和封装协会的组织赞助下,HiTEC 2025 将成为展示领先高温电子研究成果和应用要求的论坛。这也将是与来自世界各地致力于推动高温电子技术的同事建立联系的机会。要求的摘要包括以下主题:• 应用:
航空航天公司 (Aerospace) 团队感谢参与整个研究的组织所做的贡献,其中包括美国国家航空航天局 (NASA) 行星防御协调办公室 (PDCO)、美国国家科学基金会 (NSF) 天文科学部 (AST)、美国太空部队 (USSF)、空军研究实验室 (AFRL)、美国海军天文台 (USNO) 和海军研究实验室 (NRL)。我们还要感谢 NSF 电磁频谱管理 (ESM) 部门和 NSF 大气和地球空间科学部的项目官员讨论他们的知识和指导。团队感谢以下主题专家组织提供和展示他们的专业知识:约翰霍普金斯大学应用物理实验室 (JHU-APL)、喷气推进实验室 (JPL)、国家射电天文台 (NRAO) 和麻省理工学院林肯实验室 (MITLL)。我们还要感谢国家射电天文台的 Tony Beasley 博士提供历史成本估算,为研究的成本分析做出了贡献。
• 通过分析工具和趋势以及预测分析增强批判性思维 • 利用持续过程改进原则来完善第一眼质量交付成果 • 加强与 AFLCMC/OZA 和 XZ、AFMC/A9A 和 A4、AFRL 和 AFIT 的分析伙伴关系,例如 AF 舰队指标、WSER 趋势分析扩展、WSS 分析和数字线程/数字孪生概念验证——初始备件和集成数据库 • 管理 LHA、PSTK、USAP/IG 支持的执行和与武器系统的长期后勤健康及其对快速变化的产品支持要求的遵守情况相关的政策审查。• 负责监督和跟踪 AFLCMC 目标、宗旨和计划(计划 1.2.2 应投资扩大产品支持,计划 2.1.1 应在 EOCY17 之前在 AFLCMC 各个地点标准化 MIPR 流程,以及计划 3.2.1 应在整个 CY17 期间为 COE 提供领导和教育机会)
实现新飞机的预期轮胎寿命一直很困难,特别是对于战斗机而言。某些飞机型号的初始飞机轮胎寿命低于预期,这导致项目产生了意想不到的成本。轮胎寿命问题是性能要求不断提高、重量要求不断变化以及对轮胎磨损力学缺乏了解的直接结果。为了解决这个问题,第 96 测试组、航空航天生存能力和安全作战基地 (96TG/OL-AC) 与空军研究实验室 (AFRL) DOD 超级计算资源中心正在合作开发用于轮胎磨损设计、测试和评估的高级计算建模功能 [1] 。正如在以前的飞机采购计划中所观察到的那样,在采购周期的早期显著延长轮胎寿命可以使项目的后勤、环境和财务方面受益。延长某些飞机的轮胎寿命可以在飞机的整个生命周期内节省数亿美元。
实现新飞机的预期轮胎寿命一直很困难,特别是对于战斗机而言。某些飞机型号的初始飞机轮胎寿命低于预期,这导致项目产生了意想不到的成本。轮胎寿命问题是性能要求不断提高、重量要求不断变化以及对轮胎磨损力学缺乏了解的直接结果。为了解决这个问题,第 96 测试组、航空航天生存能力和安全作战基地 (96TG/OL-AC) 与空军研究实验室 (AFRL) DOD 超级计算资源中心正在合作开发用于轮胎磨损设计、测试和评估的高级计算建模功能 [1] 。正如在以前的飞机采购计划中所观察到的那样,在采购周期的早期显著延长轮胎寿命可以使项目的后勤、环境和财务方面受益。延长某些飞机的轮胎寿命可以在飞机的整个生命周期内节省数亿美元。