执行摘要 F-35A,T/N 12-005053 佛罗里达州埃格林空军基地 2020 年 5 月 19 日 2020 年 5 月 19 日晚 2126L,事故飞机(MA),一架尾号为 (T/N) 12-005053 的 F-35A 飞机在佛罗里达州 (FL) 埃格林空军基地 (AFB) 的 30 号跑道上坠毁。这架 MA 由第 58 战斗机中队 (FS)、第 33 作战大队 (OG) 操作,隶属于第 33 战斗机联队。事故飞行员 (MP) 安全弹射,但受伤没有生命危险。这架价值 175,983,949 美元的 MA 翻滚、起火并被彻底摧毁。在进近和着陆过程中,MP 设定并保持 202 节校准空速 (KCAS)。飞机以大约 50 KCAS 的速度快速着陆,比着陆要求的倾斜度浅约 8 度,迎角为 5.2 度。飞机着陆持续了大约五秒钟,之后 MP 弹射。飞机机头以高速下降,前起落架在主起落架之后立即接触跑道。接下来,MA 经历了一次明显的机头高弹跳。在最初的弹跳之后,MP 进行了操纵杆输入,试图恢复并设定着陆姿态。然而,MP 的操纵杆输入很快就与飞机俯仰振荡和飞机控制周期不同步。接地两秒后,MP 设定并保持后操纵杆,这通常会使飞机机头抬高。在指挥后操纵杆约一秒钟后,飞行员还指挥油门全开加力燃烧器。这两个动作都与试图建立一种姿态一致,这种姿态将允许飞机起飞并复飞以进行另一次着陆尝试。尽管飞行员保持后操纵杆三秒钟,水平稳定器仍保持完全向下偏转,这会使飞机机头向下。在多次且逐渐恶化的弹跳后试图复飞失败后,MP 松开操纵杆进行弹射。AIB 主席根据大量证据发现,事故首先是由 MA 以 202 KCAS 速度着陆引起的,其次是由 MA 飞行控制面(即飞机尾部)在着陆时与 MP 输入相冲突引起的,导致 MP 无法从飞机振荡中恢复。AIB 主席还根据大量证据发现,另外四个因素是导致事故的重要因素。根据美国法典第 10 章主要影响因素包括:MP 在着陆时开启了速度保持功能并使用了备选交叉检查方法,MP 头盔显示器未对准导致 MP 在飞行的关键阶段分心,MP 因疲劳导致认知能力下降,并且 MP 缺乏飞行控制逻辑的系统知识。§ 2254(d) 事故调查员在事故调查报告中对事故原因或促成事故的因素的意见(如果有)不得被视为因事故引起的任何民事或刑事诉讼的证据,此类信息也不得被视为美国或这些结论或声明中提及的任何人承认承担责任。
To lt't'I lilt' diu'r,ifil'd l'hallt'ilg"", oft,'n,d in lilt' Ij()~pilal, II I,.. 01/\ iuu- that IllI' b",t di~infl'dall! i,.. 1I1lt' that i~ adi,,' al!ailJ~t thl' 很棒""t nU1ll11I'1 III (lrg"III'IlI"', III ,'Ift'd, a di,..infl'dalll that "Irer, 11l1,..lti"" but ,aft"~ di,-inf,'dioll and "h~('hi, non, ",ll'di\,' in it, :Iblh\ 杀死tht~\\j.~It"'Lj!"[lr.lJl!.! v..CgU;;\,'li".!!!::, \\E~Ull)' '\E i,.. 'lH'h a dl,illft'dallt.11"'pit,d pn'lIllllt'l"lto aI'" 所有 LIIl!i1iar \\ith di,..inf,'dallt,.. u~illg "ht'nol~, d:lo ri III','d "llt'nol" "lid qua tntiil arnlllllnlUIIl ('0 TIl pound,. in tltei r (o\'lnUL,tloll art',d,o \ny Illuch,marl' of thl',..Iwrll'orninl!" of tht,,.e di,-婴儿。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
正式更改注册期限,仅可预约。(请参阅相应位置的“更改”段落。预约和逾期费。)* 截止日期:(1) 更改或取消 SINS 评分;(2) 未经讲师许可添加课程;(3) 无需支付 20 美元更改费即可添加或删除课程。在此日期之后删除的课程将包括在内。包含在学费计算中。在此日期之后,将评估 20 美元的更改费和学费没收。。正式退学而不欠学费或费用的最后一天。费用报表已邮寄给所有注册学生。取消课程且不记入永久记录的最后期限。将已批准的申请送回 207 Schmitz 进行考试以获得学分的最后期限。申请学士学位。1985 年秋季艺术与科学专业必须提交至 B 10 Padelford。.", \
如果您最近去过格林伍德军事航空博物馆的航空公园,并且如果您对细节有敏锐的观察力,您可能已经注意到博物馆的阿弗罗兰开斯特飞机在冬季焕然一新。为了对抗大自然的有害风化影响,志愿者罗伯特·穆伦和戴夫·索尔尼尔一直在努力修复飞机驾驶舱发黄和开裂的有机玻璃温室。他们整个夏天和秋天都在测量、切割和成型机舱前半部分的新玻璃,虽然工作尚未完成,但新旧玻璃的清晰度差异是惊人的。恶劣的天气条件迫使他们考虑在温暖的 GMAM 庇护下修复机舱后部
航母上可用的着陆区在所有六个自由度上处于连续运动状态。航母的滑跃甲板、飞行甲板、船体和上层建筑与迎面而来的风的流场相互作用,从而在航母后方形成湍流。这种“湍流效应”非常危险,过去曾造成过各种事故。为了补充印度理工学院德里分校正在进行的航母环境流体动力学研究工作,本研究调查了滑跃甲板和上层建筑对通用航空母舰 (GAC) 周围流动的影响。进行了计算流体动力学 (CFD) 研究以模拟气流尾流并使用滑跃甲板建立基线。随后,进行了进一步的研究以分析尾流对航母几何形状变化的敏感性。引入滑跃甲板会产生大部分湍流,这是飞行员在进近时在船尾遇到的。通过以各种方式优化滑跃甲板几何形状,可以大大减少湍流。
F-35B 是联合攻击战斗机的短距起飞和垂直着陆 (STOVL) 变体。这种独特飞机的“悬停”能力是通过推力矢量喷嘴和中央安装的升力风扇的组合实现的,前者引导主发动机排气向下以产生后垂直升力,后者提供平衡的前垂直升力。Moog 设计、认证并制造了这两种应用所需的复杂作动系统。具体来说,Moog 为三轴承旋转喷嘴提供作动系统,该喷嘴将主发动机的排气向下旋转 90 度。此外,Moog 还提供控制升力风扇可变面积喷嘴和进气导叶的作动系统,从而控制通过升力风扇的气流。这些执行系统使用电子控制液压和燃油液压伺服执行器,专为在极端温度和振动环境下运行而设计。
samantha rossano,samantha.rossano@yale.edu。作者贡献SR收集并分析了PET数据,完成了Western印迹和分析,并准备了手稿; TT监督Western印迹和分析以及手稿准备; EB收集并重建宠物数据; IL分析了宠物数据; KF进行了宠物成像和数据收集; NN,JR,SL,YY,ZF和HH开发,合成和宠物示踪剂的QC; DK合成宠物示踪剂; HB为研究设计做出了贡献;船尾确定和分配的动物,进行了所有监测和成像,包括超声和PET/CT,数据收集,进行了所有胎儿组织收集,有助于研究设计和手稿准备; SG分析了PET数据,有助于研究设计和手稿准备; REC为研究设计,进行了PET实验,数据分析和手稿准备。
农场收入。1 Agrivoltaic作物试验对作物产量的影响显示出显着差异,其结果不同,取决于广泛的因素,包括作物类型,品种,位置,太阳能设计,阵列内的位置以及天气。需要进一步的研究,以更好地理解和预测产量的影响,确定合适的作物品种,并适应特定位置,农作物和生产系统的太阳能设计。仍然,船尾的最近调查以及太阳能和储存工业研究所(SI2)表明,对调查做出回应的大约三分之二的农民和牧场主对从事Agrivoltaics生产开放,主要是由补充收入以支持其运营的补充收入而动机。同样,太阳能行业预计Agrivoltaics的未来增长,有80%的太阳能开发商对SI2的调查做出了回应,表明他们计划将来开发Agrivoltaic项目。
