1. Erana-Perez Z、Igartua M、Santos-Vizcaino E*、Hernandez RM* (AC) 。差异蛋白质和 mRNA 货物装载到工程化大细胞外囊泡和小细胞外囊泡中揭示了体外和体内试验中的差异。J Control Release 379: 951 (2025) 影响因子:11.467,Q1。2. Las Heras K、Garcia-Orue I、Aguirre JJ、de la Caba K、Guerrero P、Igartua、Edorta Santos-Vizcaino M*、Hernandez RM* (AC) 。载有来自毛囊或脂肪组织的人类间充质基质细胞的大豆蛋白/β-几丁质海绵状支架可促进糖尿病慢性伤口愈合。Biomater Adv 155: 213682 (2023)。影响因子:7.9,第一季度。3. Las Heras K、Royo F、Garcia-Villacrosa C、Igartua M、Santos-Vizcaino、Falcon-Perez JM*、Hernandez RM* (AC)。毛囊来源的间充质基质细胞的细胞外囊泡:分离、表征和治疗慢性伤口愈合的潜力。干细胞研究与治疗 13:147 (2022)。影响因子:5.985,第一季度。4. Gonzalez-Pujana A、Vining KH、Zhang DKY、Santos-Vizcaino E、Igartua M、Hernandez RM (AC)、Mooney DJ (AC)。多功能仿生水凝胶系统可增强间充质基质细胞的免疫调节潜力。生物材料。257:120266 (2020)。如果:10.307,Q1。 5. 拉斯赫拉斯 K、桑托斯-比斯卡诺 E、加里多 T、古铁雷斯 FJ、阿吉雷 JJ、德拉卡巴 K、格雷罗 P、伊加图亚 M、埃尔南德斯 RM(AC)。大豆蛋白和甲壳质海绵状支架:从天然副产品到生物医学应用的细胞输送系统。绿色化学,22:3445-3460(2020)。如果:10.182,Q1。 6. 冈萨雷斯-普亚纳 A、桑托斯-维兹卡伊诺 E、加西亚-埃尔南多 M、埃尔纳兹-埃斯特拉达 B、M. 德潘科博 M、贝尼托-洛佩斯 F、伊加图亚 M、巴萨贝-德斯蒙特 L (AC)、埃尔南德斯 RM (AC)。基于细胞外基质蛋白微阵列的单细胞分辨率生物传感器:整合素分析和细胞-生物材料相互作用的表征。传感器和执行器,B:化学。299:126954 (2019)。影响因子:7.460,第一季度。7. Hernando S、Requejo C、Herran E、Ruiz-Ortega JA、Morera-Herreras T、Lafuente JV、Ugedo L、Gainza E、Pedraz JL、Igartua M (AC)、Hernandez RM (AC)。n-3 多不饱和脂肪酸在帕金森病部分病变模型中的有益作用:神经胶质细胞和 NRf2 调节的作用。神经生物学疾病 121:252-262 (2019)。影响因子:5.332,第一季度。 8. Garcia-Orue I、Santos-Vizcaino E、Etxabide A、Uranga j、Bayat A (AC).、Guerrero P、Igartua M、de la Caba K、Hernandez RM (AC)。用于伤口愈合的仿生明胶和明胶/壳聚糖双层水膜的开发。药剂学。 11(7):314-332(2019)。如果:4.699,Q1。 9. Hernando, S.、Herran, E.、Figueiro-Silva, J.、Pedraz JL、Igartua M.、Carro, E.,
b'[2] C. Yan,X。Duanmu,L。Zeng,B。Liu,Z。歌曲,线粒体DNA:分布,突变和消除,细胞,8(2019)。[3] F. Liu,D.E。Sanin,X。Wang,肺癌中的线粒体DNA,实验医学与生物学进展,1038(2017)9-22。[4] J. Zhang,J。[5] P.P.Jia,M。Junaid,Y.B。 MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Jia,M。Junaid,Y.B。MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。MA,F。Ahmad,Y.F。jia,W.G。li,D.S。pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。[6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。[7] A.O.Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Giacomelli,X。Yang,R.E。lintner,J.M.McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。McFarland,M。Duby,J。Kim,T.P。D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。D.Y. HowardTakeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Takeda,S.H。ly,E。Kim,H.S。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Aguirre,J.G。Doench,F。Piccioni,C.W.M。Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Roberts,M。Meyerson,G。Getz,C.M。Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Johannessen,D.E。根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。[8] G.A.Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Fontana,H.L。[9] C.Y.dai,C.C。ng,G.C.C。Hung,I。Kirmes,L.A。Hughes,Y。gahlon,线粒体DNA缺失形成的复制和修复机制,核酸res,48(2020)11244-11258。du,C.A。Brosnan,A。Ahier,A。Hahn,C.M。 Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。 [10] L. Ou,H。Liu,C。Peng,Y. [11] H. Liu,J。Weng,C.L.H。 Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Brosnan,A。Ahier,A。Hahn,C.M。Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。[10] L. Ou,H。Liu,C。Peng,Y.[11] H. Liu,J。Weng,C.L.H。Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Huang,A.P。杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。[12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。[13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。[14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。[15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。[16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。2025.529997。[17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。[18] L. Hengrui,《中药用于癌症治疗中使用的有毒药物的例子》,J Tradit Chin Med,43(2023)209-210。[19] H. Liu,J。Weng,《 Rad51的Pan-Cancer生物信息学分析》,涉及诊断,预后和治疗预测的值,肿瘤学的前沿,12(2022)。[20] H. Liu,J。Weng,胶质瘤中细胞周期蛋白依赖性激酶2(CDK2)的全面生物信息学分析,Gene,(2022)146325。[21] H. Liu,T。Tang,Pan-Cancer的库糖胞化和铜代谢相关的基因集,肿瘤学的边界,12(2022)952290。[22] H. Liu,Y。Li,Cornichon家族AMPA受体辅助蛋白4(CNIH4)在头部和颈部鳞状细胞癌中的潜在作用,癌症生物标志物:疾病标志物A部分(2022)。[23] H. Liu,J.P。Dilger,J。Lin,pan-Cancer-Biodorminicals-Informinical-Informicals Trpm7的文献综述,Pharmacol Ther(2022)108302。[24] H. Liu,cuproptosis Gene Set的Pan-Canter概况,《美国癌症研究杂志》,第12期(2022)4074-4081。[25] Y. Liu,H。Liu,氨基酰基TRNA合成酶复合物的临床能力相互作用多功能蛋白1(AIMP1),用于头颈鳞状细胞癌,癌症生物标志物:疾病标志物A节A节(20222)。[26] Y. Li,H。Liu,Y。Han,在头部和颈部鳞状细胞癌中,Cornichon家族AMPA受体辅助蛋白4(CNIH4)的潜在作用,研究方形(2021)。 '
2024 Voits,T.,DeLuca,V.,Hao,J.,Elin,K.,Abutalebi,J.,Duñabeitia,J.A.,Berglund,G.,G.,Gabrielsen,A.(2024)多语言参与模拟的静止状态振荡活性在整个老化140,70-80的寿命神经生物学中。doi:10.1016/j.neurobiolaging.2024.04.009 DeLuca,V.,Voits,T.,Ni,J.,Carter,F.,Rahman,F.&Segeart,K。(2024)绘制双语经验的各个方面,以适应大脑结构的适应。脑皮质34(2),Bhae029。doi:10.1093/cercor/bhae029 Voits,T.,Rothman,J.,Calabria,M.,Robson,H.和Pliatsikas C.(2024)轻度认知障碍患者的河马适应受双语语言经验调节。双语:语言和认知,27(2),263-273。doi:10.1017/s1366728923000354。Alrwaita,N.,Meteyard,L。,Voits,T.,Houston-Price,C。&Pliatsikas,C。(2024)执行功能受双语言使用的背景调节:比较Diglossic和双语老年人。双语:语言和认知27(1),178-203。doi:10.1017/s1366728923000056。
Victor Aguirre,资源规划与采购经理 Lee Alter,首席供应方规划师 Lauren Briggs,资源采购与规划总监 Jenny Crusenberry,资源规划与对冲经理 Nonso Emordi,首席供应方规划师 Ilse Morales Duarte,供应方规划师 II Brianna Robles,供应方规划师 II Mike Sheehan,燃料、资源规划与批发副总裁 Sheryl Torrey,燃料、资源规划与批发高级总监 Ryan Anderson,业务开发经理 Dan Bache,首席预测分析师 Joe Barrios,媒体关系与监管传播主管 Jessica Berry,能源计划主管 Rhonda Bodfield,企业传播总监 Carol DeLillo,首席可再生能源分析师 James Elliott,定价经理 Megan Garvey,环境服务与可持续性高级总监 Nick Jacobs,日前市场运营经理 Karen Kansfield,监管服务经理 Camila Martins-Bekat,有益电气化战略负责人 Bonnie Medler,首席政策分析师 Matt Miller,经济发展负责人 Blake Pederson,批发营销总监 Bryan Rosenbaum,网络通信专家 Sam Rugel,系统控制与可靠性总监 Joe Salkowski,通信与公共事务高级总监 Donovan Sandoval,配电规划与工程经理 Catherine Schladweiler,环境政策与可持续性经理 Gary Trent,输电规划经理 Jesse Waters,平衡授权职能经理
• 有可能通过 2.7 千瓦屋顶太阳能和 12.6 千瓦时电池系统以及企业系统提供 100% 的家庭弹性。这将降低家庭和社区层面的脆弱性; • 使用 96 亿美元的联邦资金来实现这一计划具有成本效益,这将使电力系统成本到 2035 年降低到 15 美分/千瓦时以下(而 2019 年为 21 美分/千瓦时); • 波多黎各可以在 15 年内达到 75% 的可再生能源,到 2035 年将化石燃料支出减少到每年仅 4.3 亿美元(目前 PREPA 每年花费超过 14 亿美元); • 无需投资新的化石燃料发电厂或将现有发电厂转换为天然气; • 只需对配电系统进行总计约 6.5 亿美元的适度投资,电网就可以支持高达 75% 的屋顶可再生能源和储能的可靠整合; • 二氧化碳排放量将减少 70%,使波多黎各成为紧急应对气候变化的先锋; • 可以淘汰化石燃料发电,首先是 AES 煤电厂,然后是 Palo Seco 和 Aguirre 燃油电厂。在 75% 可再生能源情景下,其余机组一年的使用时间非常少,甚至根本不使用。这将减少对 PREPA 脆弱的输电系统的依赖; • 该计划所需的资本投资比 PREPA 提出的综合资源计划少 50 亿美元,并且该提案将使系统每年比现有系统节省 5 亿美元。
Craig Roberts,PSOD Mayank Choudhary,主管,基础设施财务部 1(PSIF1),PSOD a 团队负责人 Danyaal Malik,投资专家,PSIF1,PSOD 团队成员 Genevieve Abel,首席投资专家(诚信),PSTS,PSOD Jean Claire D. Aguirre,高级投资官员,PSIF1,PSOD Amund Beitnes,投资专家,PSIF1,PSOD Ranie Catimbang,副社会发展官员,私营部门和太平洋运营服务(OSPP),保障办公室(OSFG) Donnah Ethel Gianan,社会发展官员,OSPP,OSFG Annabelle Giorgetti,高级经济学家,私营部门交易支持部(PSTS),PSOD Beatrice Gomez,首席保障专家,OSPP,OSFG Justine Padiernos,经济学官员,PSTS,PSOD Ted Platon,高级担保和银团贷款官员,担保和银团贷款部门, PSOD Arman Seissebayev,投资专家,PSIF1,PSOD b Richard Sherrington,首席保障专家,OSPP,OSFG Samantha Gloria Singson,副投资官,风险分析部,PSOD Stephanie Sioson,副保障官,OSPP,OSFG Anne Valko Celestino,高级社会发展专家(性别与发展),性别平等处,气候变化和可持续发展部 a 派驻印度常驻代表团。 b 派驻哈萨克斯坦常驻代表团。在制定任何国家计划或战略、资助任何项目或在本文件中指定或提及特定领土或地理区域时,亚洲开发银行无意对任何领土或地区的法律或其他地位作出任何判断。
在我们的第二期新闻通讯中,提到了 _ Reed 和 Judith Harrison 以及他们的女儿之一 Julie 在 1993 年 7 月 25 日星期日参加完家庭聚会后从犹他州罗斯福飞往加利福尼亚州卡马里奥的航班上失踪的消息。Reed (MSO 60) 驾驶着一架 Beechcraft Bonanza 飞机,这是他从朋友那里借来的,因为他的 Beech Baron 正在维修。1994 年 4 月 30 日,飞机残骸和遇难者遗体在加利福尼亚州贝克东北约 26 英里的沙漠高原被发现。来自加利福尼亚州大熊湖的拥有 14 年 CAP 经验的飞行员 Bob Buhrle 与 2 名志愿者一起发现了坠机地点。Reed 曾多次飞越该航线,拥有超过 2,000 小时的飞行经验,拥有仪表等级证书并获得了教练执照。 Bonanza F33A 是在一处废弃矿区附近的缓坡上发现的。在搜索结束后,B1':r-le 决定自己进行搜索。Buhrle 和志愿者 Matt Brule 和 Steve Aguirre 正沿着一条旧矿道行驶,突然发现有东西在阳光下闪闪发光。这个物体看起来不对劲。徒步前往该地区后,三人发现了残骸。看来 Bonanza 以近乎垂直的角度坠入地面,高速撞击地面。目前坠机原因未知。住在加利福尼亚州圣巴巴拉的 Jack Mathews (MSO 48) 是第一个通知我们这一发现的人。然后是来自卡诺加公园的 Dan Hensley (MSO 57)
Mohammed Abdalghafoor(可持续发展解决方案网络);Hassan Aboughalma(Georenco);Mohammad Awwal Adeshina(大邱庆北科学技术大学);Damilola Adeyanju(世界能源理事会与气候组织);Nana Serwaa Antwi(米兰理工大学);Patrick Atouda Beyala(伦敦大学亚非学院);Alan Bravo(SP Global);Roman Buss(世界能源理事会);Bernardo Carrillo(Stemy Energy);Mahmoud Abou Elenen(GE Vernova);Sam Hawkins(Ember);Gabriela Hernández-Luna(CIICAp-UAEM);Soe Htike Aung;Ånund Killingtveit(挪威科技大学);Peter Konings(APEG);Felix Kriedemann(REScoop.eu);Leopoldo Micò(Solar Heat Europe);Golnoosh Mir Moghtadaei(Enertime); Ekta Mishra(帕蒂尔理工学院);Mweetwa Mundia Sikamikami(TRiM BITPoP 工程);Abubakar Musa Magaga(尼日利亚交通技术学院);Michelle Marie Nolan Aguirre(非洲 - 欧盟能源伙伴关系);Jesse Nyokabi(Quaise Energy Africa);Pallav Purohit(国际应用系统分析研究所);Swasti Raizada(国际可持续发展研究院);Nizomiddin Rakhmanov;Madan B. Regmi(联合国);Oliver Reynolds(GOGLA);Rosenberg J. Romero(CIICAp-UAEM);Abdelaziz Salah Saidi(沙特阿拉伯国王哈立德大学);Jin Tanaka(UNISC 国际);Eman Tora(ECADO 创新);Loveth Ugwu Ovedje(达尔豪斯大学 MELAW);Patricia Villarroel Sáez(Perito Corte de Apelaciones);马塞拉·温科莱托·雷森德 (Gerdau)
人工智能(AI)的出现已经迎来了各个行业的效率和准确性的新时代,库存管理和需求预测处于这些进步的最前沿。传统库存管理技术通常依赖于历史数据和简单的统计模型,在解决当代市场的动态和复杂性方面缺乏(Chopra&Meindl,2016年)。AI具有先进的算法和机器学习能力,为这些关键业务功能提供了一种变革性的方法。本文探讨了AI技术在优化库存管理和预测客户需求方面的集成。AI增强库存管理涉及应用各种AI技术,例如机器学习,自然语言处理(NLP),计算机视觉和机器人技术工艺自动化(RPA)(RPA)(Ivanov等,2017)。机器学习算法分析了大量的历史数据,以识别模式和趋势,从而可以在库存水平上进行更准确的预测和调整。NLP流程从社交媒体和客户评论等来源提供非结构化数据,以更深入了解市场趋势和客户偏好(Cambria&White,2014年)。计算机视觉技术有助于实时监视库存水平并通过视觉数据识别差异,而RPA自动化了重复的任务,例如订单处理和库存跟踪,从而降低了人为错误和提高效率(Aguirre&Rodriguez,2017年)。本文重点介绍了通过AI实施实现的预测准确性和库存周转率的重大改善,并讨论了对供应链管理的未来影响。
姓名 姓名 ABOGADIE RANDYCEASAR BETONI BASS CHRISTOPHER CHANDLER ADAM JOHN CANADAY BAUER RUSSELL ARNO III ADAMES CHRISTOPHER MATTHEW BAULDRICK MICHAEL GREGORY ADAMS CHANCELLOR DEAN BAUMANN ANDREW JOSEPH AGOSTA JORDAN ALLEN BELLEW DOUGLAS ALEXANDER AGUIRRE CORINA BENNETT ULISES S ALAMINA CHELSY IRENE MARIAN BERGSAETHER MICHAEL J ALDRICH ZACHARY A BERRIOSBECK KASSANDRA MARIE ALZATE DIEGO ALBERT BESS RYAN C AMOSA TAGOVAILOA ADAM BIBBINS KRYSTAL A ANDERSON IAN M BIBLE BRITTANI DAWN ANDERSON WILLIAM LAWRENCE BIERUT EMILY JUDE ANDREY NICOLETTE ROSALIA BIRDSONG PAYTON MIKAELA ANGELI MADELINE DIANNE BISHOP KALOB A ARATA SARAH E BLAIR SAMUEL JAMES ARMSTRONG LAMONTE AHMOD BLAKESLEE BENJAMIN CHARLES ARMSTRONG NICHOLAS ALEXANDE BLANCO KAI BLAKE ARNOLD WILLIAM JEFFERSON BLOOM MICHAEL ASH WILLIAM MICHAEL BODE ARIELLA B ASSAL RONNY HANI BOE AARON WILLIAM ASTROP BRANNER DOUGLAS BONAMASSA MATTHEW FRANCIS AUSTILL NICHOLAS P BONFILIO ALEXANDRA PAIGE AYALA LESLEY GUADALUPE BOSWELL NICHOLAS J AYBARPIMENTEL JOHAN MANUEL BOTT TYLER JAMES BACSO安德鲁·C·布雷迪 玛格丽特·H·贝利 乔舒亚·劳伦斯·布兰肖 埃米莉·M·贝利·拉恩·米切尔 布伦南·瑞安 埃德蒙·鲍德温 德米特里·A·布雷 瑞安·J·鲍尔 泰勒·拉托里亚·布里格斯 亚伦·拉沙恩 巴尔的摩 加布里埃拉 尼娜·布里尔 马克斯韦尔 沃尔特·巴利奥齐安 约翰·B·布鲁克 詹姆斯·S·班格博斯 阿比奥拉 詹姆斯·布鲁斯南 赖利 安德鲁·班克斯 法伦·德奈 布劳顿 约翰·卡尔顿·巴普蒂斯特 詹姆斯·保罗·布朗 贾梅尔·李·巴伦丁 布赖恩·詹姆斯·布朗 约翰·阿奇三世·巴内特 梅塞德斯 西蒙尼·布朗 凯利·M·巴尔 托马斯·弗雷德里克·C·布朗 昆汀乌金·巴尔塔·伊莎贝拉·玛丽亚·布朗宁丽贝卡·L