摘要。北冰洋对太阳辐射的定向反射主要由两种主要表面类型形成:海冰(通常被雪覆盖)和开阔海洋(无冰)。在它们之间的过渡区,即边缘海冰区 (MIZ),表面反射特性由两种表面类型的反射率的混合决定。在 MIZ 上应用的检索方法需要考虑混合方向反射率;否则在 MIZ 上检索到的大气参数可能会出现不确定性。为了量化这些不确定性,需要分别测量 MIZ 的反射特性。因此,在本案例研究中,使用在无云条件下 20 分钟低空飞行期间用数字鱼眼镜头收集的机载测量值,推导出 MIZ 中非均匀表面(海冰和公海混合)的平均半球方向反射因子 (HDRF)。为此,开发了海冰掩模以将反射率测量值与海冰和公海分开,并推导出各个表面类型的单独 HDRF。将相应的结果与文献中的模拟和独立测量值进行了比较。结果表明,由于波浪衰减,MIZ 中的公海 HDRF 与均匀海洋表面不同。使用两种表面类型的单个 HDRF 和海冰分数,描述方向反射率的混合 HDRF
有关安全超声暴露限值的规定是基于数量非常有限的研究,这些研究仅将听力阈值变化视为听力缺陷的指标。当前研究的目的是评估高强度超声暴露对一系列听力功能指标的影响,包括听力阈值以及听力缺陷的亚临床指标:噪声中言语理解、超阈值听觉脑干反应波 I 幅度和延迟以及对调幅 (AM) 音调的频率跟随响应水平。在一组 9 名年轻听众中,对左耳暴露于高强度超声之前和之后这些指标的变化进行了评估。这些变化与对照组 9 名年轻听众的变化进行了比较。暴露包括在每个级别上以 105、110、115 和 120 dB SPL 的水平呈现 18 40 kHz AM 音调 19 持续 10 分钟,再加上在超声波检测任务期间暴露 20 40 kHz 未调制音调,总持续时间为 50 秒。与对照组参与者相比,暴露组参与者的左耳与右耳相比,没有发现任何听力功能测量值有显著变化。在暴露于 AM 音调期间获得的脑电图记录未显示调制频率或超声音调的低频次谐波处有显著的锁相活动。九分之一的参与者能够以高于偶然水平的水平完成超声检测任务,尽管由于实验设置的限制,她能够检测到音调呈现的机制仍不清楚。35
Viessmann 广泛的产品系列提供适合各种需求的热泵。即使在设计阶段,也可以考虑结构和地质条件以及个人和个人对热需求的偏好。使用光伏系统现场产生的电力来运行热泵特别环保,而且非常实惠。
NASA DC-8 机载实验室实验员手册简介 自 1987 年 8 月以来,NASA 一直在使用道格拉斯 DC-8-72 飞机 (NASA 817) 进行地球、大气和空间科学的研究活动。这架飞机经过大量改装,成为飞行实验室,位于加利福尼亚州爱德华兹的德莱顿飞行研究中心 (DFRC)。它的运营是为了造福那些提案已获得 NASA 总部批准的研究人员。根据研究要求,机载实验室飞行可以在 DFRC 或全球部署地点进行。DC-8 是一种四引擎喷气式飞机,航程超过 5,000 海里(9,200 公里),升限 41,000 英尺(12,500 米),实验有效载荷 30,000 磅(13,600 千克)。计划使用率为每年 350 至 500 飞行小时。飞机上安装了特殊视窗、电源系统和仪器,以支持各种研究项目。DC-8 的空中研究任务由 DFRC 的科学任务理事会(代码 PS)规划、实施和管理。指定的任务经理负责分配任务的所有阶段,是实验人员以及地面支持和飞行操作组的官方联络点。任务经理领导一个针对每个任务的核心团队,该团队由他/她本人、一名操作工程师、一名项目飞行员和机组长组成。该团队做出有关任务飞机操作的所有重要决策。任务经理还在任务的飞行阶段担任机上任务主管。任务主管在飞行期间协调和监控飞机上的科学和操作活动。本手册的目的是让未来的 DC-8 研究人员熟悉飞机及其功能。本手册还包含获得飞行实验批准的程序,概述了设备设计和安装的要求,并确定了 DFRC 可用于支持 DC-8 机载实验室研究活动的人员和设施。本手册由 DFRC 科学任务理事会管理并不时修订。因此,在安排实验之前,建议先查看下面列出的网站,然后联系 DFRC 机载科学理事会或您指定的任务经理以了解当前问题。简介/术语 第 1 页 2011 年 1 月有关整个 DFRC 机载科学计划的信息,包括飞机时刻表和机载科学飞行请求程序,以及此手册和其他实验者手册的电子版,请访问万维网:http://www.nasa.gov/centers/dryden/aircraft/DC-8/index.html。
摘要 富尔奈斯火山是世界上最活跃、游客最多的火山之一。其山顶火山口(Crate`re Dolomieu)是主要的旅游景点,2007 年发生了一次重大火山口坍塌,其边缘尚未稳定。为了评估火山口边缘对游客的不稳定风险,我们跟踪了 2007 年至 2015 年的结构演变。利用航空摄影测量活动,我们非常精确地绘制了不稳定地点的地图,对这些不稳定性的时间演变进行了定量分析,并评估了游客的风险。考虑到 2008-2015 年期间,靠近火山口边缘的四个地点表现出显著的水平地面运动(0.5-2 米)、裂缝加宽(平均 0.3-0.56 米)和大规模物质流失量(总计 1.8 + 0.1 � 10 6 立方米)。我们推断出两个不同的过程:(1)在西部和北部,玄武岩单元的倾倒发生在裂缝加宽期之后,这是由于岩浆侵入和长期膨胀/收缩循环的共同作用;(2)在南部和东部,火山口边缘的部分缓慢向火山口中心滑动,在火山活动增强期间(2008-2010 年和 2014-2015 年)显著加速。官方观测台是俯瞰 Crate`re Dolomieu 最稳定的区域。相比之下,官方平台外最常访问的边缘区域(西北部)也是最不稳定的。
通过在加拿大进行的实验,现在有机会避免这种停机时间。实验表明,使用直升机和热水(不含化学品)可以为涡轮叶片除冰。热水喷洒在叶片上的方式与为飞机除冰以去除积冰的方式相同 - 这是一种简单而有效的方法,Alpine Helicopter AB 看到了进一步开发以加快这一过程的机会。Alpine 主动开发了风力涡轮机叶片除冰溶液设备的原型,与加拿大方法相比,其效果明显更快。该原型于 2013 年秋季向 Skellefteå Kraft AB 的操作员进行了演示。虽然他们对这项技术印象深刻,但该方法需要进一步开发。
Cobham 的 RT-7000PMR(面板安装无线电)支持从 29.7 MHz 到 960 MHz 的全频谱 VHF 和 UHF、AM/FM 通信,最多可配备三 (3) 个嵌入式和独立收发器,在一个紧凑的外形中提供相当于三 (3) 个独立无线电的功能。此外,RT-7000PMR 还支持一键通功能,可即时连接最多两个 (2) 个外部设备,例如手持式无线电、移动电话或 SATCOM 手机。RT-7000PMR 包括一个集成的全彩色、符合 NVIS Green B 标准的无线电控制显示器/图形用户界面 (GUI)。由于 RT-7000PMR 是软件定义无线电,因此可以单独定制 GUI 以满足操作员的独特要求。所有 RT-7000PMR 命令均由触摸屏显示器或易于使用的双同心前面板旋钮支持。所有用户控制功能和操作均在三个 (3) 菜单选项中支持。作为软件定义无线电,RT-7000 系列可随着需求的发展而升级。当模块过时时,您不需要新的无线电或培训……您将通过易于实施的软件或模块升级/添加来保持最新技术。
1995 年 9 月 29 日,国防部长威廉·佩里乘坐空军 KC-135 离开安德鲁斯空军基地。这架 KC-135 的呼号为“Casey-01”,是为支持美国高级文职和军方领导人执行行政旅行任务而配置的小型机队中的一架。然而,Casey-01 与其他机队不同,原因有二。首先是创新的机载指挥、控制、通信、计算机和情报 (C4I) 原型系统集成到飞机中,并基于商用信息技术 (IT) 构建。其次,该 C4I 系统是空军“局外人”的创意,他们是一群飞机系统设计和安装领域的非传统参与者。此次访问后不久,佩里博士给空军部长发了一封信,信中评论了“该飞机的 C4I 能力令人印象深刻,机组人员的热情和独创性也令人印象深刻,他们使用现成的技术和设备设计和安装了这个复杂的系统……以低成本和短时间改善了通信”(佩里 1)。在同一封信中,他还要求空军向他提交一份计划,将 Casey-01 设计纳入 E-4B 国家空中指挥所 (NAOC),以便它“真正成为未来国防部长的空中作战中心”。
四十多年前,频域电磁 (FDEM) 方法促成了首次航空电磁 (AEM) 发现。尽管早期面临来自时域技术的竞争,但 FDEM 尤其是直升机电磁 (HEM) 多年来蓬勃发展并多样化,成为采矿勘探的主要工具之一。随着传感器和解释技术的成熟,应用变得越来越定量,特别是在工程和环境任务中。为这些应用开发的 FDEM 方法的改进现在正应用于矿产勘探。校准精度和稳定性已成为这些定量调查数据解释质量的重要因素。随着技术的不断改进,诸如检测细微特征等困难的勘探问题(由于系统精度和分辨率不足而目前无法访问)正变得可处理。勘探人员和仪器/解释专家的共同努力对于这些新应用的开发至关重要。未来十年的技术改进可能包括系统硬件和软件的进一步集成、引入具有更宽光谱范围和密度的系统、增强校准能力、减少系统噪声和漂移以及更好地跟踪传感器方向。
免责声明:本文件并非由加拿大国防部下属机构加拿大国防研究与发展编辑部出版,但将编入加拿大国防信息系统 (CANDIS),即国防科技文件的国家存储库。加拿大女王陛下(国防部)不作任何明示或暗示的陈述或保证,也不对本文件中包含的任何信息、产品、流程或材料的准确性、可靠性、完整性、时效性或实用性承担任何责任。本文件中的任何内容均不应解释为对其中检查的任何工具、技术或流程的特定用途的认可。依赖或使用本文件中包含的任何信息、产品、流程或材料的风险由使用或依赖本文件的人自行承担。对于因使用或依赖本文件所含信息、产品、流程或材料而产生的或与之相关的任何损害或损失,加拿大不承担任何责任。