主体由 AISI 316L 不锈钢制成,确保耐腐蚀性和完美的机械特性。钢丝螺纹嵌件具有螺钉锁定功能,可防止螺纹脱开,并赋予接头最大的机械性能。镀银螺纹可防止卡住。主体上的电泳涂层可防止在铝母材上使用时发生电化学腐蚀。
副本编号33 - 美国海军上校 C. K. Tooke,船舶局 - 主席副本 NC。34 - 美国海军上校 R. A. Hinners,David Taylor Moiel Basin 副本编号35 - Corclr,R.H, Lauhert,美国海军船舶局 副本编号23 - Ccdndr.R.D. Schmidtman,美国海岸警卫队,美国海岸警卫队总部,副本编号。36 - W. G. Frederick,美国海事委员会副本编号。37 - Hubert Kempel,陆军运输部办公室主任副本编号。36- I. R. Kramer,海军研究办公室“副本 IJo.21 - Mathew Letich,美国航运局副本编号。22 - Jsmes MCIntosh,美国海岸警卫队副本编号。39 - V. L. RUSSO,LJ.S.Laritine 委员会副本编号26 - R. E, Wiley,英国海军副本编号海军副本编号27 - J. L. Nilson,美国航运局副本编号16 - Finn Jonassen,联络代表,NRC 副本编号40 - E. H, Davidson,AISI 联络代表,副本编号 41 ~~~W.Paul Gerhart,AISI 联络代表,副本编号25 - ‘jm.Spraragen,WRC 联络代表
副本编号37 - CaptainC.M. Tooke,美国海军,船舶局,主席 副本编号38 - CaptainR.A. Hinners,美国海军,David TaylorModelBasin 副本编号39 - Comdr.R.H,L+ambert,美国海军,船舶局 副本编号27 - Comdr.R.D. Schmidtman,美国海岸警卫队,美国S. 海岸警卫队总部 副本编号~0 - vi,G.Frederick,美国,S. 海事委员会副本编号。/+1- HubertKempel,陆军部运输部主任办公室副本编号。25 - MathewLetich,美国航运局副本编号。26 - JamesMcIntosh,美国。S,海岸警卫队副本编号。1+2- R. M. Robertson,海军研究办公室,美国。~。海军副本编号。43 - V. L. Rueso,美国。5. iuaritimeCommission 副本编号。30 - R. E. Wiley,美国航运局。S. Navy 副本编号, 31 - J. L. Wilson,美国航运局。 副本编号。16 - Finn Jonassen,联络代表,NRC 副本编号。44 - E; H, Davidson,联络代表,AISI 副本编号。45 - W, Paul Gerhart,联络代表,AISI cOpYNO。29 - W. Spraragen,联络代表,WRC
副本编号8- CaptainC.I!J1。图克,.USN,Syreauof Ships - 主席 Capy No.9 - 指挥官R。H. Lambert,~SN, Emr?auof 船舶副本编号10 - 指挥官R。D. Schmidtmen,lJSCG,U。S. CoastGuard 总部 副本编号11 - w,GO Frederick,U。S.W&iti.MeCC~ssiO?l 副本 1?0。12 - L.C. 主机,AmerioanBuraauof,发货副本 1,!0。13 - HubertKempel,MilitarySea Tz%neportService 复制 Ho。u - 1.R. Kramer,海军研究办公室 副本编号15 - ]Jat.hew Letich,美国航运局 副本编号。16 - E.M.MacCutcheon,Jr.,船舶局副本 EC。17 - JamesWIntosh,美国 CoaetGuard 副本编号。18 - 见:L. Russo,U。S. MaritimeCommission 副本 Nc。19 - Finn Jonassen,联络代表,NRC 副本编号。20 - E. H. Davidson,联络代表,AISI 副本编号。21 - W,Paul Gerhart,联络代表,AISI 副本编号。22 - ?im.Spraragen,联络代表,WRC Copies23 thm 47 - Chss.Wright 爵士,联络代表,BJS1!I(海军参谋)
AISI 630, 13 合金, 176 阳极极化, 107 关节成形术, 222 ASTM A 262E, 176 ASTM F 138, 168 ASTM F 746, 176 ASTM F 1314, 3 ASTM F 1586, 3, 39, 168 ASTM F 1801, 194 ASTM F 1875, 235 ASTM F 2129, 176 ASTM F 2180, 50 ASTM G 5, 107 ASTM G 71,107 奥氏体不锈钢, 119, 168, 194
AISI 630, 13 合金, 176 阳极极化, 107 关节成形术, 222 ASTM A 262E, 176 ASTM F 138, 168 ASTM F 746, 176 ASTM F 1314, 3 ASTM F 1586, 3, 39, 168 ASTM F 1801, 194 ASTM F 1875, 235 ASTM F 2129, 176 ASTM F 2180, 50 ASTM G 5, 107 ASTM G 71,107 奥氏体不锈钢, 119, 168, 194
它由一根 AISI 304 管构成,在 AP1018 - AP1017 - AP1013 - AP1014 版本中,其两端有两个碳钢法兰,在 AP1016/DIN 版本中,其两端有两个 AISI 304 接头类型 DIN 11851。绝缘材料(聚四氟乙烯或硬橡胶)也衬在其上。这种衬里材料也存在于法兰上。根据需要,您可以使用带不锈钢法兰的仪表。在 AP1116 版本中,衬里(仅聚四氟乙烯)也用作主要结构。产生磁场的绕组位于管道的外侧。钢盖和聚氨酯树脂铸件保护它们。两个电极位于仪表中间,位于两个直径相对的点上。连接器位于仪表的外侧,配有保护盖。为避免灰尘进入,切勿将其打开!为避免盖子丢失,使用塑料线将其连接到仪表。在 IP 68 版本中,电缆在接线盒内树脂化以确保保护。订购流量计时,您必须声明此电缆的长度。配套卡(AP550)完成仪表的供应。此卡具有与流量计相同的序列号,必须插入转换器 AP501 – AP501/B 内的合适连接器上(参见图纸 5582-5583-5584-5585)。如果转换器包含在供货范围内,我们已经插入了 AP550 卡。如果要更换转换器 AP501 – AP501/B,则必须将 AP550 卡插入新转换器内。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
主体采用球墨铸铁,齿条采用钢,小齿轮采用 AISI 316,垫圈和滑动轴承采用 Viton、Teflon、BUNA N、NBR 等多种材料。这些材料与特殊的环氧涂层循环相结合,经过精心挑选,可在腐蚀性海洋和近海环境中运行。它们还适用于原油(酸性类别/重 API 度)、石油产品、盐水中的水下应用,安装在浮动和干船坞走廊、钻井平台支柱内,并放置在任何干燥位置。
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。