摘要 肾脏和脑表达蛋白(KIBRA)rs17070145 与工作记忆功能和认知过程相关。然而,这些关联的神经机制尚不完全清楚。本研究旨在通过扩散峰度成像(DKI)和静息态功能磁共振成像(fMRI)探索 163 名青年人 KIBRA 多态性对脑微结构和血氧水平依赖性(BOLD)波动的影响。我们还调查了成像改变是否介导了 KIBRA 基因与工作记忆表现之间的关联。基于体素的DKI数据分析表明,与KIBRA TT纯合子相比,KIBRA C等位基因携带者的轴向扩散率(AD)、径向扩散率(RD)和平均扩散率(MD)增加,而各向异性分数(FA)、平均峰度(MK)和径向峰度(RK)降低,主要涉及前额叶、左侧楔前叶和左侧顶上叶白质。同时,与KIBRA TT纯合子相比,KIBRA C等位基因携带者的左侧楔前叶低频波动幅度(ALFF)降低。中介分析显示,左侧楔前叶的DKI指标(MK和RK)介导了KIBRA多态性对工作记忆表现的影响。此外,左侧楔前叶的MK和RK与同一脑区的ALFF呈正相关。这些发现表明,异常的 DKI 参数可能提供一条基因-大脑-行为通路,其中 KIBRA rs17070145 通过调节左楔前叶的大脑微结构来影响工作记忆。这表明 DKI 可能提供额外的生物学信息,并揭示有关 KIBRA 多态性的神经机制的新见解。
背景:长期技能学习可以导致大脑的结构和功能变化。不同的运动可以触发不同大脑区域的神经可塑性。排球是最受欢迎的团队运动之一,在很大程度上依赖于个人能力,例如高级运动员的感知和预测。然而,与非运动员相比,有助于排球运动员表现出色的特定大脑机制尚不清楚。方法:我们进行了一项研究,涉及招募十名女性排球运动员和十名常规女大学生,分别组成了运动员和新手小组。对两组进行了全面的行为评估,包括功能运动屏幕和视听反应时间测试。此外,两组都采集了静息态磁共振成像(MRI)数据。随后,我们进行了深入的分析,重点是运动员和新手组中大脑中大脑中低频频率(ALFF),区域同质性(REHO)和功能连通性(FC)的幅度。结果:两组之间的行为数据中未观察到显着差异。然而,与新手组相比,运动员组在视觉皮层中的ALFF和REHO中都表现出值得注意的增强。结论:这项研究揭示了排球运动员对与视觉,运动和认知有关的各种大脑功能的显着影响。表明排球作为基于团队的竞争活动,促进了视觉,认知和运动技能的发展。此外,视觉皮层和关键大脑区域之间的功能连通性,包括左主感觉皮层,左辅助运动皮层,右岛,右岛,左上颞回和左下壁壁叶,在运动员组中比在运动员组中更强大。这些发现为运动才能的早期培养和青少年的全面发展提供了额外的支持。此外,他们还提供了预防和治疗与运动有关的疾病的新观点。
注意:除第一个受试者(潜在异常受试者)的 CEN 中的 fALFF 外,所有相关系数均显著。缩写:ALFF,低频波动幅度;CEN,中央执行网络;DC,度中心性;DMN,默认模式网络;fALFF,低频波动分数幅度;ReHo,区域同质性;SN,显著性网络。a 标记的受试者被视为潜在异常值;因此,对所有原始数据和原始出版物中提到的所有技术问题进行了交叉检查。交叉检查未发现该受试者的任何特殊性(部分信号丢失或移动)。但是,当进行没有这个受试者的额外分析时,这个样本量(15 名参与者)的结果与整个样本(16 名参与者)的结果并没有明显差异,如图 S1 和 S2 所示。
背景:认知障碍(CI)是精神分裂症的独特特征,有证据表明儿童和青春期的精神分裂症(CAOS)代表了严重但罕见的精神分裂症形式,具有与成人发作条件的连续性。虽然在精神分裂症的成年人中已经确定了脑功能改变和CI之间的关系,但CAOS中脑功能异常的程度在很大程度上是未知的。在这项研究中,我们采用了静止状态功能磁共振成像(RS-FMRI)来研究CAOS患者大脑区域的功能改变。要评估跨多个认知领域的CI,我们利用了Stroop颜色和单词测试(SCWT)和基质共识认知电池(MCCB)测试。我们的目标是探索这些患者中功能性CI与低频频率(ALFF)水平的振幅之间的关联。
理解表明,CTN源于神经血管的压缩,这导致三叉神经中的脱髓鞘和异位神经元结尾(2,6-8)。但是,这种解释未能捕获该疾病的复杂性和异质性,表明其他因素参与CTN的开发和维持(9-14)。近年来,静息状态功能磁共振成像(RS-FMRI)已成为研究与神经系统疾病相关的功能变化的宝贵工具(15、16)。通过测量血液氧合水平依赖性(粗体)信号,RS-FMRI允许评估大脑中的神经活动和连通性(17,18)。几项研究利用RS-fMRI来探索CTN患者的功能改变,并了解该疾病基础的复杂神经过程(12、19、20)。最近的研究发现表明在5秒钟和30分钟内低频弹力(ALFF)的静态和动态振幅的动态变化(19)。在检查静态和动态程度中心性的研究中发现了类似的结果(20)。尽管RS-FMRI在CTN方面取得了进步,但CTN患者复杂性变化的空间分布仍然有限。大脑熵(BEN)是从RS-FMRI数据中得出的,已被证明是绘制整个大脑中时间信号复杂性的宝贵工具(21)。BEN具有与分数ALFF和脑血流相比评估脑功能的独特特征(22)。但是,BEN在CTN患者中的作用仍然未知。最近的研究表明,在默认模式网络和执行控制网络(23)中静止BEN的神经认知相关性(23),并报告说,较低的静息脑熵与各种任务中的更强的任务激活和失活有关(24)。值得注意的是,在摄入(25),重复的经颅磁刺激(26)和各种脑部疾病(包括阿尔茨海默氏病)(27),自闭症谱系障碍(28),主要抑郁症(29),重大抑郁症(29),以及躁狂和狂热的bip bip bip bip bipallal(30)中,已经观察到BEN的改变(25),重复的经颅磁刺激(26)和各种脑部疾病。这些研究令人震惊地展示了BE在检测正常脑功能和各种脑部疾病中的独特作用。本研究旨在研究CTN患者复杂性变化的空间分布。通过将CTN患者与健康对照组(HCS)进行比较,我们旨在确定表现出改变复杂性并探索其功能意义的区域。通过检查BEN改变的模式,我们希望更好地了解CTN潜在的神经机制,并确定潜在的生物标志物来诊断和治疗评估。
饮食中与健康个体积极和负面情绪相关的激活区域,从而创造了积极的情绪地图集(豌豆)和负面情绪地图集(NEA)。,我们使用这些地图集检查了抑郁症患者的神经影像变化,并根据机器学习评估了他们的诊断性能。结果:我们的发现表明,基于PEA和NEA的抑郁症患者的分类准确性超过0.70,与整个脑图相比,这是一种提高。此外,ALFF分析在NEA期间在八个功能簇中揭示了抑郁症患者与健康对照组之间的特殊差异,重点是左轴心,扣带回和上顶叶。在很重要的情况下,豌豆在15个簇中揭示了更明显的差异,其中涉及右fu型回,帕拉希帕克胶回和下顶叶下叶。结论:这些发现使情绪调节和抑郁症之间的复杂相互作用揭示了抑郁症患者的PEA和NEA的显着变化。这项研究增强了我们对抑郁症中情绪调节的理解,对诊断和治疗评估产生了影响。
缩写:ACC,前扣带皮层;ACE2,血管紧张素转换酶2;ALFF,振幅低频波动;BBB,血脑屏障;BCT,脑连接工具箱;CC,胼胝体;CMB,脑微出血;COMMIT2,微结构信息纤维束成像2的凸优化模型;CSD,约束球面反卷积;DT,扩散张量;DW-MRI,扩散加权MRI;FA,分数各向异性;FBA,基于固定单元的分析;FC,纤维横截面;FD,纤维密度;FDC,纤维密度和横截面;FOD,纤维方向分布;FOV,视野;GM,灰质;ICU,重症监护病房;MD,平均扩散率; N Acc,伏隔核;NBS,基于网络的统计数据;OFC,眶额皮质;RT-PCR,实时逆转录聚合酶链反应;SyN,对称标准化;UF,钩束;WM,白质。* 通讯作者:意大利马里奥内格里 IRCCS 农业研究所生物医学工程系,Villa Camozzi via GB Camozzi, 3, 24020 Ranica (BG)。电子邮件地址:alberto.arrigoni@marionegri.it (A. Arrigoni)、sara.bosticardo@univr.it (S. Bosticardo)、gpezzetti@asst-pg23.it (G. Pezzetti)、sofia.poloni@ marionegri.it (S. Poloni)、serena.capelli@marionegri.it (S. Capelli)、 anapolitano@asst-pg23.it (A. Napolitano), andrea.remuzzi@unibg.it (A. Remuzzi), rzangari@ fontazionefrom.it (R. Zangari), llorini@asst-pg23.it (FL Lorini), msessa@asst-pg23.it (M. Sessa), alessandro.daducci@univr.it (A. 达杜奇),anna.caroli@marionegri.it (A. Caroli),sgerevini@asst-pg23.it(S. Gerevini)。