Soavi,F.,Brilloni,A.,de Giorgio,F.,Poli,F。(2022)。半溶解锂/氧气流量电池:一种新兴的高能技术。当前的化学工程意见,37,1-10 [10.1016/j.coche.2022.100835]。
†在水性检查后确定。‡由RP-HPLC确定。 §将其作为回收的粗混合物x纯度(%)。 ¶从前一个条目进行了重新封闭。 #RP-HPLC和ESI-MS还检测到depsripeptides的存在。通过硅胶垫过滤后††。 boc:tert-butycarbonyl; CBZ:苯甲酰氧气; ESI-MS:电喷雾电离质谱法; FMOC:氟苯基甲氧基碳苯甲; HAP:羟基磷灰石; RP-HPLC:反相高性能液相色谱。‡由RP-HPLC确定。§将其作为回收的粗混合物x纯度(%)。¶从前一个条目进行了重新封闭。#RP-HPLC和ESI-MS还检测到depsripeptides的存在。通过硅胶垫过滤后††。boc:tert-butycarbonyl; CBZ:苯甲酰氧气; ESI-MS:电喷雾电离质谱法; FMOC:氟苯基甲氧基碳苯甲; HAP:羟基磷灰石; RP-HPLC:反相高性能液相色谱。
总结,2022-2023财政年度的AMS财务分析在批评家Al Juncture上描绘了一个组织的图片,面临着财务挑战,但有望为战略增长和改进而有所帮助。AMS适应财务压力的能力,对战略基金管理和运营的承诺结合在一起,对于Navig来说至关重要,这对于财政LAN DSCAPE的复杂性以及继续为UBC学生社区提供了宝贵的服务。随着AMS的向前发展,重点将继续提高财务稳定,运营效率和整体服务冰,以确保组织的长期成功和可持续性。
ALMA AI 的诞生使我们能够将 500 多名教授、研究人员、博士生和研究员聚集在一个中心,他们拥有人工智能方面的技能并积极开展研究,以建立联系、发挥协同作用、整合知识,让不同的灵魂进行交流通过创建内部网络。人工智能在我们日常生活的许多方面变得越来越重要:在机械、工业、工作世界、公共部门:从研究的角度来看,还有很多工作要做。在我们采用跨学科方法的大学内,众多研究人员根据两个维度研究与人工智能相关的主题。第一个涉及新技术和算法的开发:它是一门计算机科学、数学物理研究,来自我们社区最具技术和科学精神的灵魂。第二个重点是应用人工智能解决各种领域的问题:从医学到生物学,从农学到力学等等。在这些领域,会产生大量的数据,可以通过AI的方法从中提取价值。该中心将使我们能够提高大学在项目开发和抓住不同层次(地区、国家和欧洲)融资机会方面的表现,与公司合作,并最终实现第三个使命的目标朝向领土。Alma AI除了作为研究中心之外,还承担着培训和传播的目标。人工智能现在已在大多数以科学为导向的课程(工程学、计算机科学、数学、物理学等)中教授。),但培养领域专家也很重要,从我们大学的教授和研究人员开始,他们可以在各个垂直领域使用人工智能,并从其应用意义中受益。作为一所综合性大学,我们可以通过建立内部联系来扩大范围并了解人工智能在各个领域的应用,从而提高大学的表现。
在日本,ALMA始于20世纪80年代初科学界自下而上的讨论:1983年提出了大型毫米波阵列(LMA)的设想。1987年,LMA的设想演变为大型毫米波和亚毫米波阵列(LMSA),并考虑了亚毫米波的观测。2001年,NAOJ、NSF和ESO签署决议,成立了ALMA。2004年,NAOJ正式加入ALMA建设,同年“阿塔卡马大型毫米波/亚毫米波阵列(ALMA)”得名。
推进生态理论并在该领域建立新学科。该奖项的第一位获奖者是美国加利福尼亚大学欧文分校的詹妮弗·马丁(Jennifer Martiny),在2024年8月19日星期一的主题演讲中,她在开普敦接受了她的奖项。ALMA DAL CO奖:ISME已将年轻调查员奖改名为Alma Dal Co奖,以纪念Alma Dal Co的生活和工作(1989- 2022年)。ISME ALMA DAL CO奖旨在尊重Alma Dal Co对微生物生态学领域的重要贡献,保留其智力遗产,并激发早期职业研究人员以Alma Dal Co对知识,创新,创新和多学科的热情进行突破性研究。ALMA DAL CO奖旨在表彰为这一领域做出了重大贡献的早期职业生物学家。ALMA DAL CO奖得到了Alma Dal Co基金会的支持,该基金会旨在保留Alma Dal Co在科学和音乐方面的知识遗产。ISME Young研究者奖的过去获奖者包括Ian Head(2004),Phil Hugenholtz(2006),Forest Rohwer(2008),Marc Strous(2010),Victoria Orphan(2012),Ruth Ley(2014),Gene Tyson(2016)Catherine Lozupone(2018)和凯利(2018)和凯利·韦尔(Kelline Lozupone)和凯利·韦尔(Kelly Werton),2024年8月23日星期五,澳大利亚悉尼技术大学的让·巴蒂斯特·雷纳(Jean-Baptiste Raina)在主题演讲中获得了Alma Dal Co奖。ISME-IWA生物群集奖:ISME和IWA自2016年以来一直合作,为这些奖项提供了这些奖项,以表彰和奖励微生物生态学和水/废水处理的界面中异常优点的跨学科研究。今年,获奖者,艾米·普鲁登(Amy Pruden),弗吉尼亚理工大学,美国和后起之秀奖得主瑞安·齐尔斯(Ryan Ziels),加拿大不列颠哥伦比亚省大学,在特别敬业的ISME - IWA -IWA会议上在ISME19获得了奖项。
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。
博洛多诺大学的药房和生物技术系(PTA实验室),药房和生物技术系(Fabit),母校垫,通过Belmeloro 6,40126 Bolmeloro 6,40126 Bologna,意大利B细胞神经生物生物学实验室,药学和生物学(Fabit),Alma Materim,Selma Materim,Sillma Materim,Sciess,Sciess,Sciess,Sillive of Sely of Selioragy Laboloby b细胞神经生物学实验室。意大利C Bologna,Bari Aldo Moro生物科学,生物技术与环境系Bologna,Corso d'Augusto 237,47921意大利RIMINI F国家研究委员会(CNR)生物膜研究所,生物能和分子生物技术(IBIOM),通过Giovanni Amendola 122,70126 Bari,意大利,博洛多诺大学的药房和生物技术系(PTA实验室),药房和生物技术系(Fabit),母校垫,通过Belmeloro 6,40126 Bolmeloro 6,40126 Bologna,意大利B细胞神经生物生物学实验室,药学和生物学(Fabit),Alma Materim,Selma Materim,Sillma Materim,Sciess,Sciess,Sciess,Sillive of Sely of Selioragy Laboloby b细胞神经生物学实验室。意大利C Bologna,Bari Aldo Moro生物科学,生物技术与环境系Bologna,Corso d'Augusto 237,47921意大利RIMINI F国家研究委员会(CNR)生物膜研究所,生物能和分子生物技术(IBIOM),通过Giovanni Amendola 122,70126 Bari,意大利,
January 2020-June 2021 Assistant researcher of Alma Mater Studiorum – University of Bologna, Interdepartmental Center for Industrial Research Advanced Mechanical Engineering Applications and Materials Technology , title : “Studio di nuovi sistemi assistiti da plasma freddo per la decontaminazione/disinfezione in linea del packaging nel settore alimenti e bevande”, ALTE COMPETENZE 2019 Regione Emilia-Romagna grant •Where Bologna-Italy • Date 29 April 2015 • Thesis PhD Thesis: “Biomedical applications of cold atmospheric pressure plasmas” • Where Alma Mater Studiorum- Università di Bologna - Italy • Date January 2015-December 2019 • Activity Assistant researcher of Alma Mater Studiorum – University of Bologna, Department of Industrial Engineering • Where Bologna – Italy • Date November 2014年•活动短期科学任务:“通过液体和气相等离子体排放在水中产生的反应性物种的化学分析”,由成本动作TD1208授予Eng,Eng。petr lukes•捷克共和国布拉格的捷克共和国科学学院等离子体物理研究所的地方
本文档概述了收集和校准 ALMA 数据需要测量或考虑的各种量。它是项目手册第 3 章的更新,并取代了它。传统上,“校准”通常被认为是无线电干涉测量中的后处理练习,本质上只涉及在收集数据后对数据所做的事情。在本文档中,我们采取更广泛的视角,并包括天线信号相关之前必须测量的所有量。这些仍然是正式的“校准”,因为它们是仪器参数的测量 - 它们通常测量的频率较低。然而,它们的重要性不亚于后处理校准。此外,我们还讨论了一些甚至不是直接测量的主题,而是影响我们所需数量测量的事物。一个例子是太阳引力势中无线电波的相对论偏转,这实际上不是一个直接测量或校准的量(除非间接测量),但确实会影响我们正确计算延迟的能力,进而影响我们校准天线站位置等的能力。考虑所有这些类型的校准、测量和影响对于 ALMA 发挥其全部潜力至关重要。我们必须了解必须考虑哪些影响,以及我们将如何在数据收集和后处理过程中测量和/或纠正它们。以前从未有过在如此详细地了解场地及其对望远镜的影响的情况下建造射电天文仪器。有了这些知识,我们可以优化完整的测量和校准策略,为 ALMA 产生最大的科学产出。除了简单描述 ALMA 预期的不同类型的校准、测量和影响之外,我们还提供了有关必须确定测量量或必须考虑影响的精度的一些规范。对于其他干涉阵列,必要或可能的校准可以分为几种类型(例如,参见 Fomalont & Perley 1999;Thompson、Moran 和 Swenson 2001)。为了我们的目的,我们将校准分为两种主要类型:
