肌肉收缩由肌节的分子机制驱动。由于磷酸化是肌肉功能的关键调节器,因此鉴定调节性激酶对于了解肌节生物学非常重要。α激酶 3 ( ALPK3 ) 的致病变异会导致心肌病和肌肉骨骼疾病,但人们对这种非典型激酶知之甚少。在这里,我们表明 ALPK3 是肌节 M 带的重要组成部分,并定义了 ALPK3 依赖性磷酸化蛋白质组。ALPK3 缺乏会损害人类心脏类器官和携带致病性截短 Alpk3 变异的小鼠心脏的收缩力。ALPK3 依赖性磷酸肽富含 M 带的肌节成分和泛素结合蛋白 sequestosome-1 (SQSTM1)(也称为 p62)。 ALPK3 相互作用组分析证实了其与 M 带蛋白(包括 SQSTM1)的结合。在模拟心肌病 ALPK3 突变的人类多能干细胞衍生心肌细胞中,SQSTM1 的肌节组织和 M 带定位异常,这表明该机制可能是疾病发病机制的基础。
图 1. 多引导 sgRNA 可实现高敲除效率。为三个基因( ALPK3 、 JAK1 、 NUAK2 )设计了三个单引导 RNA,并分别引入(sgRNA1、sgRNA2、sgRNA3)和一起引入(多引导)。平均而言,多引导 sgRNA 的表现分别比 ALPK3 、 JAK1 和 NUAK2 的单个引导 RNA 好 50.8%、32.1% 和 48.2%。通过核转染将核糖核蛋白 (RNP) 转染到 HEK293 细胞(针对 ALPK3 )和 MCF7 细胞(针对 JAK1 和 NUAK2 )。对每个靶标周围的区域进行 PCR 扩增、桑格测序,并使用 CRISPR 编辑推断 (ICE) 分析进行分析。敲除 (KO) 分数是指导致推定敲除(移码诱导插入/缺失和 21+ bp 片段缺失)的序列百分比。
将门德尔疾病基因分为主导和隐性模型的离散分类通常会过度简化其潜在的遗传结构。心肌病(CMS)是具有复杂病因的遗传疾病,最近提出了越来越多的隐性关联。在这里,我们全面分析了与与CM表型相关的双重变异有关的所有已发表的证据,以鉴定高信心隐性基因,并探索已建立的隐性和主导疾病基因中的单相和双质变体效应的光谱。我们将18个基因与CMS的牢固隐性缔合分类,其特征在于扩张表型,早期疾病发作和严重结果。这些基因中的几个基因与英国生物库中的疾病结局和心脏性状具有单相关性,包括LMOD2和ALPK3,分别具有扩张和肥厚的CM。我们的数据提供了对遗传性心脏病中优势和隐性复杂范围的见解,并证明了这种方法如何能够发现未开发的遗传关联。
