总体分析显示,循环设计、循环采购等与循环商业模式融合程度越高的行动,往往会产生更全面、更广泛的影响。相比之下,诸如能源回收之类的行动所呈现的贡献更加分散,仅限于特定的应用。这些举措之间的平衡对于创建强劲的循环经济至关重要,该文件强调了优先考虑高贡献行动以最大限度地发挥积极影响、补充其他贡献水平的行动的重要性。该分析强调了在整个生产链中整合循环行动的重要性,以及加强公共政策和投资以实现中低影响实践的必要性。这将使不太具有代表性的策略在循环经济领域获得相关性。
DNA 可以通过多种物质的作用而改变,这些物质通常被定义为诱变剂;然而,必须注意的是,突变(即改变含氮碱基序列的罕见随机变化)并不一定是有害事件,而是进化的基础:然而,上述突变必须进入非常密集的细胞控制论网络以及所讨论的生物体生活和运作的环境;如果超出这些限制点(鉴于其内在的复杂性,高度选择性,绝大多数突变实际上都是无利可图的甚至是中性的),生物体将因突变而变得丰富。腐败剂包括例如氧化剂、烷化剂以及高能辐射,例如X射线和紫外线。对 DNA 造成损害的类型取决于药剂的类型。
Robin Lovell-Badge 1*#,Eric Anthony 2,Rocker A. Barker 3,Tania Bubela 4,Ali H. Brivanlou 5,Melissa Carpenter 6#,R。AltaCharo 7#,Amander Clen 8#,Ellen Clayton 9,Ellen Cong Cong 9,Yali Cong Cong 9,Yali Cong Daley 11#,Jianping Fu 12,Misiao Fujita 13,Andy Greenfield 14,Steve A. Goldman 15,Lori Hill 16,Insoo Hyun 17#,Rosario Isasi 18,Jefffrey Kahn 22,JürgenKnoblich23#,Debra Mathews 19,Nuria Montsert 24,Jack Mosher 2,Megan Munsie 25,Hiromimsusu Nakauchi 26,Lugi Naldini 27摇滚歌手Pedersen 31,Nicolas Rivron 32,Heather Roke 33#,Janet Rossant 34#,Jeff Roound 35,Minori Saitou 13,Douglas Sipp 36#,Julie Steffann 37,Jeremy Sugarman 19,Azim Suranan 19,Azim Suranan 13,Fuchou Tang 10,Leigh Turner 39,Patricia J. Zettler 40,Xiaomei Zhai 41 41 41 41 41,Patricia J. Zettler 40
简介:自从纳米机器人技术出现以来,药物化学学科在纳米技术的应用方面经历了指数级的发展。纳米技术最有潜力的用途之一是创造纳米机器人,它可以应用于药物输送、医学成像等各种行业,甚至纳米机器人的优点还包括体积小、重量轻、灵活性高、灵敏度高、推重比高。纳米机器人用途广泛,正在多个领域进行研究。本综述的目的是概述快速发展的药物化学纳米机器人领域及其在疾病检测、治疗和预防方面的潜在应用。
人工智能 (AI) 正在彻底改变诊断医学,尤其是在放射学、基因组学和临床数据分析等领域。先进的机器学习和深度学习算法在检测病理方面表现出了很高的准确性,在某些情况下甚至超过了人类的表现。本评论讨论了应用于医学诊断的主要人工智能技术、其好处(例如提高诊断准确性和灵活性)以及道德挑战(例如数据隐私和算法偏见)。人工智能的未来有望整合预测诊断和个性化医疗,改变患者护理,并要求医疗专业人员做出适应。谨慎采用这些技术对于确保技术进步与医疗质量保持一致至关重要。
生物信息学是一个研究领域,近年来已经合并,位于生命科学,数学和计算科学的交集。 div>该领域已被迅速被认为是生物医学生物学研究和当今研究的基础。 div>生物信息学包括开发和应用计算工具和分析生物学数据的获取,组织,档案,分析和可视化以及对了解高复杂性系统的生物学过程的建模。 div>在计算机系统,互联网上的数据库和生物技术的最新革命提供了直到最近无法想象的生物学和医学的机会。 div>这些进步对具有生物信息学技能的科学家和专业人士造成了很大的要求。 div>
电子邮件:mileton.junior@ceub.edu.br摘要简介:卵巢癌(CO)是第二个流行的妇科肿瘤,在该组中呈现最高的死亡率,将自己配置为全球高临床相关性的病理学。该疾病基于基因组不稳定性和DNA修复缺陷,通过从聚合酶(ADP-荷兰)酶(PARP)中修复来证实恶性细胞繁殖。您长期以来的治疗一直基于化学疗法和手术疗法,但是,随着时间的流逝,它们的失败和复发率会表现出来。鉴于此,出现了一条新的治疗系,即PARP(PARPIS)的抑制剂,它们已经批准了三种药物:Olaparibe,Niraparibe和Rucaparibe。所讨论的研究旨在详细阐述有关
TMBP在L-929细胞受UVB辐射作用下的作用机制研究。 Clara Fernandes Torre(PIBIC/CNPq/FA/UEM)、Bruna Terra Alves da Silva、Sueli de Oliveira Silva Lautenschlager(顾问)。电子邮件:lautenschlager@uem.br。波多黎各马林加州立大学健康科学中心。知识领域和子领域:药学/生药学 关键词:光保护; UVB辐射;抗氧化剂。摘要 紫外线B(UVB)辐射由于其高能量,可穿透表皮,造成直接的DNA损伤并通过产生活性氧(ROS)造成间接损伤。抗氧化物质,如3,3',5,5'-四甲氧基联苯-4,4'-二醇(TMBP),有助于维持细胞氧化还原平衡。目的是研究 TMBP 治疗对受到 UVB 辐射的 L-929 成纤维细胞的影响。评估了线粒体膜电位、脂质过氧化、DNA碎片和细胞膜完整性。 TMBP 显示出体外功效并且可能具有光保护方面的前景。简介 皮肤是一道保护屏障,直接暴露于太阳辐射的有害影响,根据其传播特性和生物效应,太阳辐射包括三个波段:UVC、UVB 和 UVA。尽管 UVC 是一种强效的致突变剂,但由于被臭氧层吸收,它无法到达地球表面。 UVB 和 UVA 辐射到达地球并造成皮肤损害(SOLANO,2020 年)。 UVB由于能量高,可穿透表皮,对DNA造成直接损伤,并通过产生ROS造成间接损伤。 ROS 在细胞功能中发挥着至关重要的作用,但当 ROS 产生过量或抗氧化剂减少时,就会产生危害,从而导致氧化应激。抗氧化剂对于皮肤健康至关重要,因为它们可以中和活性氧 (ROS) 并防止氧化应激 (G Ę GOTEK, 2020)。 TMBP 在无细胞试验中表现出了抗氧化潜力,表明它是一种很有前途的防晒化合物。我们的目标
独特的中央生产过程的测量将使大型强子对撞机物理项目扩展到电弱领域和 QCD 领域成为可能,并且对物理的特殊敏感性超出了标准模型。为此,最近安装了 CMS-TOTEM 精密质子光谱仪,旨在在高亮度大型强子对撞机的正常操作条件下运行。光谱仪由位置和时间探测器组成,安装在距 CMS 两侧交互点约 210 m 的位置,位于称为“罗马罐”的移动结构内,可让您更接近光束。从相互作用中完好无损地出现的散射质子,仅损失了一小部分动量,被光束包络外部的大型强子对撞机磁铁偏转,并用硅像素探测器平面进行测量。相反,需要时间探测器来确定主顶点,利用两侧两个质子的到达时间信息,并在此基础上大大减少由于许多堆积事件而导致的背景。由于探测器将受到高辐射注量(估计约为 3 × 10 15 n eq / cm 2 ),因此 CT-PPS 跟踪器选择了所谓的 3D 硅像素传感器。来自三个主要制造商(CNM、FBK 和 SINTEF)的传感器在实验室和辐照前后的光束上进行了测量,以评估其特性和性能。最终探测器中使用了 CNM 传感器,以及为 CMS 像素跟踪器第一阶段升级而开发的读出芯片。两个六层空间站在 2016/2017 年大型强子对撞机冬季停运结束时进行了组装、测试和安装。探测器的调试正在进行中,通过使用从中心像素跟踪器开始开发的采集软件。检测器已经过校准,能够在 CMS 采集链内获取数据。第一次比对运行的数据已成功收集,分析正在进行中。
完整作者列表: Herzeg, Akos;加州大学旧金山分校,外科;加州大学旧金山分校,母胎精准医学中心;法兰克福歌德大学,妇产科和生殖科学系 Almeida-Porada,Graça;维克森林大学,维克森林再生医学研究所;维克森林大学,医学院 Charo, R Alta;威斯康星大学系统,法学院 David, Anna;伦敦大学学院,伊丽莎白·加勒特·安德森妇女健康研究所;伦敦大学学院,15. 国家健康研究所伦敦大学学院医院生物医学研究中心 Gonzalez - Velez, Juan;加州大学旧金山分校,妇产科和生殖科学系 Gupta, Nalin;加州大学旧金山分校,神经外科系;加州大学旧金山分校,脑肿瘤中心 Lapteva, Larissa;食品药品管理局 局长办公室,组织和先进疗法办公室/生物制品评估和研究中心 Lianoglou, Billie;加州大学旧金山分校,母胎精准医学中心;加州大学旧金山分校,外科系 Peranteau, William;费城儿童医院,普通、胸外科和胎儿外科部 - 胎儿研究中心 Porada, Christopher;维克森林大学,胎儿研究和治疗项目,维克森林再生医学研究所;维克森林大学医学院 Sanders, Stephan;加州大学旧金山分校,母胎精准医学中心;加州大学旧金山分校,精神病学和行为科学系,加州大学旧金山分校威尔神经科学研究所;加州大学旧金山分校,人类遗传学研究所;加州大学旧金山分校,巴卡计算健康科学研究所 Sparks, Teresa;加州大学旧金山分校,妇产科和生殖科学系;加州大学旧金山分校,母胎精准医学中心 Stitelman,David;耶鲁大学医学院,外科系,儿科外科分部