抑郁症与昼夜节律失调有关,但内在时钟在情绪控制大脑区域中的作用仍不太清楚。我们发现,在抑郁小鼠模型的内侧前额叶皮层 (mPFC) 中,昼夜节律负环路表达增加,正时钟调节器表达减少,随后快速抗抑郁药氯胺酮对时钟进行了反向调节。CaMK2a 兴奋性神经元中的选择性 Bmal1 KO 表明,功能性 mPFC 时钟是抑郁样表型和氯胺酮效应发展的重要因素。mPFC 中的 Per2 沉默产生了抗抑郁样效应,而 REV-ERB 激动增强了抑郁样表型并抑制了氯胺酮作用。时钟正调节剂 ROR 的药理增强引发了抗抑郁样效应,上调了可塑性蛋白 Homer1a、突触 AMPA 受体表达和可塑性相关的慢波活动,特别是在 mPFC 中。我们的数据表明 mPFC 分子钟在调节抑郁样行为方面发挥着关键作用,并且时钟药理学操作在影响谷氨酸依赖性可塑性方面具有治疗潜力。
阿尔茨海默氏病(AD)和Lewy Bodies(DLB)的痴呆症是神经退行性痴呆的主要来源,影响了全球超过5500万人。与其他形式的痴呆症患者相比,AD和DLB患者的癫痫活性患病率更高。癫痫发作可以在早期阶段伴随AD和DLB,相关的癫痫活性会导致认知症状并加剧认知能力下降。AD和DLB中的异常神经活性可能是由尚未理解的几种机制引起的。过度兴奋性可能是在痴呆发作之前早期检测AD或DLB的生物标志物。在这篇综述中,我们比较了AD和DLB中网络过度兴奋性的对比机制。我们研究了遗传危险因素,Ca 2+失调,谷氨酸,AMPA和NMDA受体,MTOR,病理淀粉样蛋白β,TAU和α-舌核蛋白,小胶质细胞和星形胶质细胞活性的贡献,以及抑制性脑脑脑膜功能受损。通过对引起神经元过度兴奋的分子机制有了更深入的了解,我们可能会发现治疗方法有效缓解症状并减慢AD和DLB的发展。
适应于表6,Jack等人(2018)8仅适用于阿尔茨海默氏症连续体中的个体中的1个生物标志物中的1个:1)a+t+n+2)a+t-n- 3)a+t-n- 3)a+t+t+n- 4)a+t-n+t-t-n+a+t-n+,其中a:aβ或相关的aβ或相关的病理状态42 /amm am ampaβ或am am am ab ab ab ab ab aβ或相关的ab ab aβ42β42或A. 42,或A. 42,或A. 42; PET),T:总tau(神经原纤维缠结)或相关的病理状态(CSF磷酸化的tau或tau PET)和N:神经退行性或神经退行性损伤或神经退行性损伤(解剖学MRI,FDG PET或CSF PET或CSF总TAU)在第1至6阶段的阶段1至6:不需要调节的情况下,可以选择与正常的调整有关的调整,并选择(或不适合调节)。性,教育等第2至6阶段:尽管认知是核心特征,但神经行为的变化(例如,情绪,焦虑或动机的变化)可能并存。在第3至6阶段:认知障碍的特征是主要不是动荡的。CSF:脑脊液; FDG:氟脱氧葡萄糖; MCI:轻度认知障碍; MRI:磁共振成像;宠物:正电子发射断层扫描。
动态微管严格调节突触功能,但是微管切断在这些过程中的作用几乎没有理解。katanin是一种神经表达的微管的复合物,可调节细胞分裂或神经发生的微管数和长度;但是,其在突触功能中的潜在作用尚不清楚。研究两性小鼠,我们发现Katanin在神经元树突中很丰富,可以在单个兴奋性脊柱突触中检测到。div> divant-dyant-aTPase降低的katanin亚基在功能上抑制切断,会改变树突中的微管的生长,在早产下,但不在成熟的神经元阶段,而不会影响脊柱密度。值得注意的是,对Katanin功能的干扰阻止了单次突触谷氨酸肠内突触后的结构脊柱重塑,并且显着影响了化学诱导长期增强后AMPA受体受体介导的兴奋性电流的增强。此外,Katanin抑制作用减少了微管的侵袭到完全发育的脊柱中。我们的数据表明,katanin介导的微管切断可调节突触部位的结构和功能可塑性。
背景:GLUT4 在胰岛素或运动刺激下促进脂肪细胞和骨骼肌吸收葡萄糖,在维持葡萄糖稳态方面发挥着至关重要的作用。GLUT4 运输中断是 2 型糖尿病的标志,与肥胖有关。1 目前研究 GLUT4 的技术主要依赖于 GFP-GLUT4 融合蛋白的表达 2 或抗体的使用。3 尽管如此,GFP 融合蛋白不适合研究 GLUT4 的亚群,而基于抗体的方法存在特异性问题,通常仅限于固定组织。缺乏标记内源性 GLUT4 和识别其在各个区室中的相互作用伙伴的工具,阻碍了对其运输和调节的理解,并限制了为治疗目的而调节其分布的策略的发展。配体引导的两步标记提供了一个平台,可以以极好的特异性标记内源性 GLUT4,同时保留其功能(图 1a)。该方法可以标记目标蛋白 (POI) 的亚群,之前曾用于研究神经元中的 AMPA 受体运输。4 我们的实验室在设计、合成和应用类似的配体定向标记探针方面拥有丰富的经验。我们建议采用这种技术标记内源性 GLUT4,以研究其运输并绘制其相互作用组图。
ACC:美国心脏病学院ADA:美国糖尿病协会AEE:促红细胞生成素刺激AIN 1型手臂胰高血糖素:Armne矿物皮质激素受体拮抗剂:BCC矿物皮质激素受体的非类固醇主义者:CAC钙通道阻滞剂:白蛋白比例/肌酐CHDL:胆固醇与高密度脂蛋白CLDL相关的胆固醇: CV: CVOT cardiovascular: essays of cardiovascular results, for its acronym in English DM1: diabetes mellitus type 1 dm2: diabetes mellitus type 2 EAU: excretion of albumin in urine of 24 h Ecv: Cardiovascular disease Ecva: Atherosclerotic cardiovascular disease Emo: Bone mineral disease Epu: Excretion of protein in 24 H ERC:慢性肾脏疾病ERD:糖尿病肾脏疾病ET:肾脏疾病ESH/ESH:欧洲心脏病学/欧洲高血压学会
图 1. 生物启发式 2D 视觉系统。生物视觉神经网络的基本组成部分,a) 眼睛可实现生物视觉,b) 大脑中的视觉皮层可实现生物学习。c) 眼睛中的光感受器可实现光传导和适应。视杆细胞可实现暗视,而视锥细胞可实现明视。d) 突触增强或减弱以进行学习或遗忘,例如,当突触前神经元释放谷氨酸神经递质时,通过控制突触后神经元中的 AMPA 受体数量来实现学习或遗忘。e) 示意图和 f) 人工视觉系统的假彩色显微镜图像,该系统由集成有可编程背栅堆栈的 9×1 2D 光电晶体管阵列组成。该平台可实现光传导、视觉适应、突触可塑性、直接学习、无监督再学习以及利用遗忘在动态噪声下学习等功能。 g) 传输特性,即在黑暗环境中不同漏极偏压(𝑉𝑉 𝐷𝐷𝐷𝐷 )下源极至漏极电流(𝐼𝐼 𝐷𝐷𝐷 )随背栅极电压(𝑉𝑉 𝐵𝐵𝐵 )变化的特性,h) 在蓝色发光二极管(LED)不同照明水平下的光转导,i) 光增强引起的学习或设备电导(𝐺𝐺 )的增加,以及 j) 在代表性 2D 光电晶体管中,在 𝑉𝑉 𝐵𝐵𝐵𝐵 = 0 V 时测得的电抑制引起的遗忘或 𝐺𝐺 的减少。
摘要:丙戊酸 (VPA) 是一种治疗癫痫和躁郁症的有效常用药物。然而,母亲在怀孕期间接受 VPA 治疗,其所生的孩子患自闭症谱系障碍 (ASD) 的几率更高。尽管 VPA 可能在细胞水平上损害大脑发育,但 VPA 诱发 ASD 的机制尚未完全解决。先前的研究发现,VPA 治疗可显著降低神经元 δ-catenin mRNA 水平。δ-catenin 对谷氨酸能突触的控制很重要,与 ASD 密切相关。有趣的是,VPA 抑制发育中的神经元中的树突形态形成,这也存在于缺乏 δ-catenin 表达的神经元中。因此,我们假设,产前接触 VPA 会显著降低大脑中的 δ-catenin 水平,从而破坏谷氨酸能突触,导致 ASD 的发展。在这里,我们发现 VPA 损害了培养的小鼠皮质神经元的发育,而这种损害可以通过提高 δ-catenin 表达来逆转。产前暴露于 VPA 显著降低了新生幼崽的突触 δ-catenin 水平并损害了超声波发声 (USV)。重要的是,我们发现产前 VPA 治疗显著降低了下丘脑弓状核中的神经元激活,这对于动物在与巢穴隔离后产生 USV 非常重要。最后,VPA 显著降低了小鼠新生儿的 AMPA 受体和突触后密度 95 (PSD-95) 水平,PSD-95 是兴奋性突触中的关键支架蛋白,这可能导致神经元激活减少。因此,这些结果表明 VPA 诱导的 ASD 病理可能是由 δ-catenin 功能丧失介导的。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
尽管现在对神经可塑性进行了广泛的研究,但曾经有一段时间成人可塑性与主流相反。基本的绊脚石源于Hubel和Wiesel的开创性实验,他们表达了令人信服的证据,表明在发育过程中存在一个关键时期的可塑性,此后大脑根据感觉输入的变化失去了变化的能力。尽管有时代精神说成熟的大脑相对不变,但科学文献中仍有许多成人神经可塑性的例子。有趣的是,这些研究中的一些涉及成年猫的视觉可塑性。甚至更早,有报道说,在背柱病变后,成年大鼠体感丘脑的功能重组,这是通过其他实验确认并扩展的。证明这些发现反映了不仅反应中心损伤,并且为了更好地控制感觉丧失的程度,使用了周围神经损伤,从而消除了使中心途径完好无损的同时消除上升的感觉信息。Merzenich,Kaas和同事使用外围神经过渡揭示灵长类动物体感皮层中明确的重组。此外,这些相同的研究人员表明,这种可塑性在不少于两个阶段进行,一个立即进行,另一种是长时间的。这些发现得到了确认并扩展到更膨胀的皮质剥夺,并进一步扩展到丘脑和脑干。在这里,我们概述了推动这种现象的启发式方法。然后,那里开始了一系列实验,以揭示允许这种可塑性的生理,形态和神经化学机制。最终,Mowery及其同事进行了一系列实验,这些实验仔细地跟踪了灵长类动物体感皮质中的几种谷氨酸(AMPA和NMDA)和GABA(GABAA和GABAB)受体复合物在外周植物损伤后几个时间点的表达水平。这些受体亚基映射实验表明,膜表达水平反映在关键时期发育的早期阶段所见的膜表达水平。这表明,在长时间的感觉剥夺条件下,成年细胞像塑性状态一样恢复到关键时期,即发育概括。
