摘要:尽管取得了一些重大进展,乳腺癌仍已成为世界上最常见的癌症。治疗失败和转移的主要原因之一是癌症起始细胞——癌症干细胞的存在。因此,现在的研究重点是针对癌细胞及其干细胞群。非肿瘤药物因其强大的抗癌活性而受到越来越多的关注。二甲双胍是一种常用于治疗 2 型糖尿病的药物,在这方面是最好的例子。它通过激活 5' 腺苷单磷酸活化蛋白激酶 (AMPK) 发挥治疗作用。活化的 AMPK 随后磷酸化并靶向几种涉及细胞生长和增殖以及维持癌症干细胞干细胞样特性的细胞途径。因此,AMPK 正在成为开发有效抗癌药物的首选靶点。钒化合物是众所周知的 PTP 抑制剂和 AMPK 激活剂。它们通过抑制 PTP1B 和 AMPK 介导的脂肪生成抑制,在治疗糖尿病和肥胖症方面有广泛的应用。然而,它们在靶向癌症干细胞方面的作用尚未得到探索。本综述旨在通过 AMPK 激活和 PTP1B 抑制途径,确定胰岛素模拟钒化合物在治疗乳腺癌方面的应用。
治疗的小鼠。此外,在Lomitapide处理的小鼠中,肿瘤体积或肿瘤的重量都显着降低(图。6b和6c)。此外,进行了TUNEL分析和KI-67免疫组织化学分析以检测凋亡和增殖指数。如图6D和6F,来自Lomitapide治疗的小鼠的异种移植物呈现出增加的细胞凋亡率和细胞增殖率降低。Western印迹数据显示,Lomitapide激活了肿瘤组织中的AMPK途径和自噬,这是由P-AMPK和LC3 I/II的表达水平升高所示(图6H)。值得注意的是,Lomitapide治疗对动物诱导了NO毒性作用,如主要器官的体重和病理形态不变所表明的那样(图6e和6g)。共同验证了
这项研究旨在表征具有不同能量水平的饮食对肉鸡(DEX)诱导的应激下肉鸡的生长性能,等离子体参数和中央AMPK信号通路的影响。总共将216个1天大的男性肉鸡鸡分配给了喂养高(HED),国家研究委员会推荐(对照)或低(LED)能量饮食的群体。在10天大的情况下,连续3天用或不含地塞米松(Dex,2 mg/kg体重)处理鸡。HED增加了肉鸡的平均每日增益(ADG),而随着饮食能水平的增加,每日饲料摄入量(ADFI)和饲料转化率(FCR)降低(p <0.05)。喂养的鸡的总蛋白质(TP)含量更高,白蛋白(ALB),葡萄糖(GLU),总胆固醇(TCHO),高密度脂蛋白(HDL)胆固醇和低密度脂蛋白(LDL)胆固醇(与对照组相比)(P <0.05)。在13天大的情况下,DEX降低了ADG,并增加了用不同能量饮食的肉鸡(p <0.05)。Dex-Hed组的ADFI高于未经饮食的HED组鸡。此外,DEX组的TP,ALB,甘油三酸酯(TG),TCHO,HDL和LDL含量水平高于对照组中的TP,甘油三酸酯(TG),TCHO,HDL和LDL含量水平高(p <0.05)。LED组的尿酸(UA)含量高于HED组的尿酸(UA)含量(p <0.05)。此外,在用DEX治疗的鸡(p <0.05)中增加了下丘脑中肝激酶B1的基因表达水平,AMP激活的蛋白激酶α1,神经肽Y和GC受体的基因表达水平。血浆TCHO和下丘脑LKB1表达之间存在相互作用的趋势(0.05 总而言之,这项研究表明,HED可以在10天大的肉鸡时提高生长性能,血浆葡萄糖和总胆固醇,但对压力肉鸡的性能,血浆参数和中央AMPK没有显着影响。总而言之,这项研究表明,HED可以在10天大的肉鸡时提高生长性能,血浆葡萄糖和总胆固醇,但对压力肉鸡的性能,血浆参数和中央AMPK没有显着影响。
mTORC1 和 AMPK 是相互拮抗的营养和能量状态传感器,与许多人类疾病有关,包括癌症、阿尔茨海默病、肥胖症和 2 型糖尿病。社会性变形虫 Dictyostelium discoideum 的饥饿细胞会聚集并最终形成由柄细胞和孢子组成的子实体。我们关注如何实现细胞命运的这种分歧。在生长过程中,mTORC1 高度活跃,而 AMPK 相对不活跃。饥饿时,AMPK 被激活而 mTORC1 被抑制;细胞分裂被阻止并诱导自噬。聚集后,少数细胞(前柄细胞)继续表达与聚集期间相同的发育基因集,但大多数细胞(前孢子细胞)切换到前孢子程序。我们描述了表明过表达 AMPK 会增加前柄细胞比例的证据,抑制 mTORC1 也会增加前柄细胞的比例。此外,刺激细胞内酸性区室的酸化同样会增加前柄细胞的比例,而抑制酸化则有利于孢子途径。我们得出结论,细胞分化的前柄途径和前孢子途径之间的选择可能取决于 AMPK 和 mTORC1 活性的相对强度,这些活性可能受细胞内酸性区室/溶酶体 (pHv) 的酸度控制,pHv 低的细胞具有高 AMPK 活性/低 mTORC1 活性,pHv 高的细胞具有高 mTORC1/低 AMPK 活性。深入了解这种转换的调节和下游后果应该会提高我们对其在人类疾病中潜在作用的理解,并指出可能的治疗干预措施。
摘要AMPK促进分解代谢并抑制合成代谢的细胞代谢,以在能量应激期间促进细胞存活,部分通过抑制MTORC1,这是一种合成代谢激酶,需要足够水平的氨基酸。我们发现缺乏AMPK的细胞显示出在氨基酸剥夺长期导致的营养应激期间凋亡细胞死亡增加。我们假定自噬受损解释了这种表型,因为一种普遍的观点认为AMPK通过ULK1的磷酸化启动了自噬(通常是亲生响应)。出乎意料的是,在缺乏AMPK的细胞中,自噬仍然没有受损,正如多个细胞系中的几个自噬读数所监测的那样。更令人惊讶的是,在氨基酸剥夺期间,不存在AMPK的ULK1信号传导和LC3B脂质增加,而AMPK介导的ULK1 S555的磷酸化(拟议启动自噬的站点)在氨基酸戒断或药理学MTORC1抑制后降低了ULK1 S555(拟议启动自噬)的磷酸化。此外,用化合物991,葡萄糖剥夺或氨基酸戒断引起的AICAR钝化自噬的AMPK激活。这些结果表明AMPK激活和葡萄糖剥夺抑制自噬。作为AMPK控制的自噬在意外方向上,我们检查了AMPK如何控制MTORC1信号传导。矛盾的是,我们观察到在长时间氨基酸剥夺后缺乏AMPK的细胞中MTORC1的重新激活受损。这些结果共同反对既定的观点,即AMPK促进自噬并普遍抑制MTORC1。这些发现促使对AMPK及其对自噬和MTORC1的控制如何影响健康和疾病进行了重新评估。此外,在延长氨基酸剥夺的背景下,它们揭示了AMPK在抑制自噬和MTORC1信号传导中的意外作用。关键字:mtor; S6K1; 4EBP1; lc3b; ULK1; ATG16L1;化合物991;葡萄糖剥夺; aicar;细胞存活缩写:AAS:氨基酸; ADP:双磷酸腺苷; AICAR:5-氨基咪唑-4-羧酰胺核糖核苷酸; AMP:单磷酸腺苷; AMPK:AMP激活的蛋白激酶; ATG14:自噬相关14; ATG16L1:自噬相关16,如1; ATG5:自噬相关5; BAFA1:Bafilomycin A1; DKD:双重击倒; DKO:双淘汰赛; ECL:增强的化学发光; LC3B:微管相关蛋白1A/1B轻链3B; MEF:小鼠胚胎成纤维细胞; MTORC1:雷帕霉素复合物1的机械靶标; MTORC2:雷帕霉素复合物2的机械靶标; p62:泛素结合蛋白p62,又名SQSTM1/secestosoms 1; S6K1核糖体蛋白S6激酶1; 4EBP1,EIF4E [真核起始因子4E]结合蛋白1; TEM:透射电子显微镜; ULK1:UNC-51样激酶1; VPS34,液泡蛋白排序34。
北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,北京北京工程疾病的国家临床医学院,国家临床研究中心,北京工程神经系统药物研究中心,北京脑疾病研究所,脑部疾病研究所中国教育部教育部疾病,中国550004,d教育部再生医学关键实验室,老龄化和再生医学研究所,吉南大学,吉南大学,广东,广东,510632,510632俄亥俄州克利夫兰,俄亥俄州克利夫兰44106-1712,美国G澳门科学技术大学,塔帕,澳门,澳门,澳门,澳门,中国澳大利亚州澳大利亚州H taipa,澳门,澳大利亚州澳大利亚州H中医学中心,深圳518101,中国518101,
用1%RIPA裂解缓冲液(Elabscience Biotechnology Co.,Ltd,Ltd,Wuhan,中国)提取HCMEC的总蛋白质,并具有磷酸化抑制剂(MCE)。蛋白质浓度,并通过12%SDS-PAGE分离30 µg蛋白质样品,然后转移到PVDF膜(Millipore,Billerica,MA,美国)。在室温下用5%非脂肪干牛奶用5%的非脂肪干牛奶阻塞膜,并在4°C下与一抗的一抗孵育过夜。随后,将膜与相应的二抗在室温下孵育2小时。使用增强的化学发光检测系统(ECL系统; Millipore,Billerica,MA,USA)可视化的蛋白质条带。ImageJ软件用于量化Western blot数据。
摘要:尽管针对不可切除的转移性黑色素瘤患者的过度活化的BRAF V600 /MEK途径的靶向疗法取得了重大进展,但获得的耐药性仍然是未解决的临床问题。在这项研究中,我们专注于对抗曲梅尼的黑色素瘤细胞,这是一种广泛用于联合疗法的药物。分子和细胞变化在曲米尼戒断和抗曲米尼耐药细胞系中的交替期间进行了评估,这些细胞系显示了分化表型(MITF高 /NGFR Low)或神经犯罪型茎状的茎状推断型(NGFR高 /MITF)。药物戒断和药物补偿均未诱导细胞死亡,而不是舒适性的丧失,而是通过表型切换来适应了抗曲敏替尼的黑色素瘤细胞。在显示分化表型的抗性细胞中,Trametinib撤回明显降低了MITF水平和活性,这与细胞增殖能力降低有关,并评估为NGFR阳性细胞和衰老特征,包括IL-8表达和分泌。所有这些变化都可以通过曲线替尼的重新暴露来逆转,这强调了黑色素瘤细胞可塑性。抗trametinib的抗性细胞表现出去分化表型的响应性较小,可能是由于MITF水平已经很低,MITF水平是黑色素瘤表型的主要调节剂。考虑到抗黑色素瘤治疗的新方向,我们的研究表明,抗靶向治疗的黑色素瘤的表型可能是针对黑色素瘤患者选择二线治疗的至关重要的决定因素。
标题页机器人手臂控制系统基于脑肌肉混合信号Li-Wei Cheng出生于1989年,目前是北京邮政与电信大学的现代邮政自动化学院的博士候选人。他于2017年获得了北京邮政与电信大学的机械工程硕士学位。他的研究兴趣包括机器学习,EEG信号处理,BCI和机器人技术。电子邮件:clw1016@sina.com Duan-Lil Li出生于1974年,目前是北京邮政与电信大学的教授。 她于2003年获得了中国北京大学的博士学位。 她的研究兴趣包括机制和机器人技术。 电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。 他于1991年获得了中国北京大学的导航指导和控制硕士学位。。 他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。 电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:clw1016@sina.com Duan-Lil Li出生于1974年,目前是北京邮政与电信大学的教授。她于2003年获得了中国北京大学的博士学位。她的研究兴趣包括机制和机器人技术。电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。 他于1991年获得了中国北京大学的导航指导和控制硕士学位。。 他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。 电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。他于1991年获得了中国北京大学的导航指导和控制硕士学位。他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。2014年,他获得了北京邮政与电信大学的机械工程博士学位。他的研究兴趣包括机制和机器人技术。电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。她于2019年获得了北京邮政与电信大学的控制科学和工程硕士学位。她的研究兴趣包括机器人技术和BCI。电子邮件:ysy_ivy@163.com通讯作者:li-wei cheng电子邮件:clw1016@sina.com