抽象的大型噬菌/自噬是一种进化保守的途径,负责清除胞质聚集蛋白,细胞器受损或入侵的微生物。功能失调的自噬导致货物的病理积累,这与一系列人类疾病有关,包括神经退行性疾病,传染性和自身免疫性疾病以及各种形式的癌症。在动物模型中的累积工作,遗传工具的应用和药物活性化合物,提出了自噬调节中疾病中的潜在治疗价值,例如亨廷顿,沙门氏菌感染或胰腺癌。正在探索自噬激活与抑制策略,而自噬在病理生理学中的作用并行研究。然而,自噬调节剂的临床前和临床发展的进展受到选择性药理学剂和生物标志物的缺乏,从而揭示了其对各种形式的自噬和细胞反应的精确影响。在这里,我们总结了自噬相关药物发现中已建立的新策略,并指出了建立更有效发现自噬选择性药物基因剂的途径。有了这些知识,对自动phagy的治疗性开发的现代概念可能会变得更加合理。缩写:ALS:肌萎缩性侧硬化; AMPK:AMP激活的蛋白激酶; ATG:自动phagy相关基因; Autac:靶向自噬的嵌合体;中枢神经系统:中枢神经系统; CQ:Chlor Oquine; GABARAP:Aγ-氨基丁酸A型受体相关蛋白; HCQ:羟氯喹; Lytac:溶酶体靶向嵌合体; MAP1LC3/LC3:微管相关蛋白1轻型链3; MTOR:雷帕霉素激酶的机械靶标; NDD:神经退行性疾病; PDAC:胰腺导管腺癌; PE:磷脂酰乙醇胺; PIK3C3/VPS34:磷脂酰肌醇3-激酶催化亚基3型; PTDINS3K:III类磷脂酰肌醇3-激酶; PTDINS3P:3-磷酸磷脂酰肌醇; protac:靶向蛋白水解嵌合体; SARS-COV-2:严重的急性呼吸综合征冠状病毒2; SQSTM1/p62:隔离1; ULK1:UNC-51喜欢自噬激活激酶1。
摘要:背景:骨质疏松症 (OP) 是一种影响全球老年人的常见骨病。确定可靠的诊断标记对于 OP 的临床管理至关重要。方法:利用 GEO 数据库 (GSE35959),我们获取了 OP 和正常样本的表达谱。通过 STRING、GEO2R 和 Cytoscape 确定差异表达基因 (DEG) 和中心基因。使用 miRTarBase、miRDB 和 MiRcode 数据库构建竞争内源 RNA (ceRNA) 网络。通过 DAVID 进行基因本体论 (GO) 和 KEGG 通路富集分析。验证涉及来自巴基斯坦人群的临床 OP 样本,使用实时定量聚合酶链反应 (RT-qPCR) 评估中心基因表达。结果:在 GSE35959 中,OP 和正常样本之间共鉴定出 2124 个差异表达基因 (DEG)。这些 DEG 中选定的枢纽基因是剪接因子 3a 亚基 1 (SF3A1)、Ataxin 2 样 (ATXN2L)、热休克蛋白 90 Beta 家族成员 1 (HSP90B1)、分化簇 74 (CD74)、DExH-Box 解旋酶 29 (DHX29)、ALG5 多萜醇磷酸 β-葡萄糖基转移酶 (ALG5)、NudC 结构域含 2 (NUDCD2) 和 Ras 相关蛋白 Rab-2A (RAB2A)。在巴基斯坦 OP 患者中对这些基因的表达验证显示,在 OP 患者中,SF3A1、ATXN2L 和 CD74 显着上调,而 HSP90B1、DHX29、ALG5、NUDCD2 和 RAB2A 显着 (P <0.05) 下调。受试者工作特征(ROC)分析显示这些枢纽基因对OP的诊断准确率较高。枢纽基因的ceRNA网络分析揭示了一些重要的枢纽基因调控miRNA和lncRNA。通过KEGG分析发现,枢纽基因在N-糖生物合成、甲状腺激素合成、IL-17信号通路、前列腺癌、AMPK信号通路、剪接体、雌激素信号通路、流体剪切应力和动脉粥样硬化等通路中富集。结论:本研究鉴定出的8个枢纽基因可以可靠地区分OP患者和正常个体,这可能为OP的诊断研究提供新的思路。
撒哈拉以南非洲预计将在全球糖尿病人数中增加最高。但是,该地区糖尿病的驱动因素尚未清楚地阐明。这项研究的目的是评估马拉维中禁食葡萄糖(IFG)受损的基于人群的队列中糖尿病的发生率和进展的发生率。我们使用了来自广泛的农村和城市非传染性疾病的数据。在基线时有389名空腹葡萄糖受损(IFG)的人中,有48±15岁,体重指数为4.2岁(714个人年)27.5±5.9 kg/m2。的发病率,并使用多变量逻辑回归模型分析了向糖尿病的进展预测因子,并使用接收器操作员特征(ROC)曲线确定了整体性能。中位随访时间为4.2(IQR 3.4-4.7)年。175(26%)中有45个发展为糖尿病。糖尿病的发病率为每1000人年95%CI,47.0-84.3。进展的预测因子更高;年龄(优势比[OR] 1.48,p = 0.046),BMI(OR 1.98,P = 0.001),腰围(OR 2.50,P <0.001),腰围比(OR 1.40,P = 0.03),P = 0.03),收缩压(OR 1.56,P = 0.01),P = 0.01),快速plasma glucose(或1.53),或1.53,或1.53,或1.53,或1.53,或1.53,或1.53,或1.53,或1.53,或1.53; 1.44,p = 0.05)和低密度脂蛋白胆固醇(OR 1.80,p = 0.002)。一个简单的模型结合了空腹血浆葡萄糖和腰围的圆周,可预测糖尿病的进展(曲线下的ROC区域= 0.79)。MALAWI的IFG患者中糖尿病的病情很高,而进展的预测指标就像其他人群中所见。我们的数据还表明,基于腰围和禁食等离子体葡萄糖进展到糖尿病的概率的简单图表可用于识别撒哈拉以南非洲临床环境中有进展风险的糖尿病。
作为生物年龄,它们会经历逐渐的细胞和分子变化,并伴随着许多生理功能的下降。因此,它们对年龄相关疾病和状况的敏感性增加(López-Otín等,2013; Son等,2019; Melzer等,2020)。衰老领域中的许多基本发现都来自于小型自由生命的线虫C.秀丽隐杆线虫(Murphy and Hu,2013年)的研究。秀丽隐杆线虫已被用作模型有机体数十年来,由于其寿命短,大约3周,尺寸小,透明的身体,易于实验的实验室维护,遗传障碍和保守的生物学途径(Brenner,1974; C.秀丽隐杆线虫测序联盟,1998年)。大约83%的秀丽隐杆线虫蛋白质组具有人类同源物(Lai等,2000),超过50%的人蛋白质编码基因在秀丽隐杆线虫中具有同源物(Sonnhammer和Durbin,1997; Kuwabara and Durbin; Kuwabara和O'Neil,2001; Harris等,2004; Harris等,2004)。胰岛素/IGF-1样信号通路(IIS)是调节秀丽隐杆线虫寿命的第一个途径。Div>随后发现编码唯一胰岛素/IGF-1样受体(Kimura等,1997)的突变,与Wildtype(WT)相比,寿命增加了一倍(Kenyon等,1993)。在秀丽隐杆线虫中的进一步研究揭示了调节衰老的其他途径的作用,包括AMP激活的蛋白激酶(AMPK)和雷帕霉素(MTOR)的机械靶标(Zhang等,2020)。此外,转化生长因子β(TGF-β)途径正在成为寿命和健康衰老的调节剂,需要进一步研究。面临衰老最大程度影响的系统之一是免疫系统,其中与年龄相关的下降称为免疫衰老。这种下降表现出感染易感性的增加,疫苗接种反应降低以及癌症和自身免疫性疾病的风险增加。导致哺乳动物这些生理的潜在变化是:免疫细胞库减少,细胞内在缺陷对淋巴细胞的固有缺陷以及增加的炎症(Akha,2018)。衰老和免疫力可以通过共同的分子机制来调节,例如IIS,TGF-β,MTOR和核因子Kappa B(NF-κB)
术语多发性硬化症(MS)总结了中枢神经系统(CNS)的异源和多因素免疫驱动的疾病。MS的主要标志是导致脱髓鞘的少突胶质细胞的变性,这与轴突和神经元损失的变化相关(1,2)。HIF-1途径的参与已与MS作为炎症脱髓鞘的潜在驱动因素(3)。 对MS供体大脑的组织病理学研究表明,III型病变中HIF-1 A的存在。 这些II型病变的特征在于低频弹性定义为远端“死亡”少突胶质细胞变性(4),随后的研究表明,缺氧伴随着反应性氧和硝酸氧化物的产生,可能是MS中胞液的早期潮流。 这些低氧状况会被其他MS病理学持续存在,例如CNS血液流量减少,血液 - 脑屏障破坏和血管炎症,因此在已经增加了能量需求增加的病变部位上会导致氧气水平低。 此外,这些缺氧因素的总和会导致线粒体功能障碍,加剧了潜在的代谢危机作为MS和实验性自身免疫性脑脊髓炎(EAE)动物模型的重要病理机制[在(5,6中综述)]。 最近的一项研究报告了MS患者的脉络丛中与缺氧有关的基因的上调。 重要的是,脑脊液流体中缺氧反应性的分泌肽水平与所研究的MS队列中的残疾等级相关(7)。HIF-1途径的参与已与MS作为炎症脱髓鞘的潜在驱动因素(3)。对MS供体大脑的组织病理学研究表明,III型病变中HIF-1 A的存在。这些II型病变的特征在于低频弹性定义为远端“死亡”少突胶质细胞变性(4),随后的研究表明,缺氧伴随着反应性氧和硝酸氧化物的产生,可能是MS中胞液的早期潮流。这些低氧状况会被其他MS病理学持续存在,例如CNS血液流量减少,血液 - 脑屏障破坏和血管炎症,因此在已经增加了能量需求增加的病变部位上会导致氧气水平低。此外,这些缺氧因素的总和会导致线粒体功能障碍,加剧了潜在的代谢危机作为MS和实验性自身免疫性脑脊髓炎(EAE)动物模型的重要病理机制[在(5,6中综述)]。最近的一项研究报告了MS患者的脉络丛中与缺氧有关的基因的上调。重要的是,脑脊液流体中缺氧反应性的分泌肽水平与所研究的MS队列中的残疾等级相关(7)。与MS的自身免疫性病理相关,HIF-1信号在免疫系统调节中起重要作用。HIF-1表达在正常氧化条件下在免疫细胞中通过雷帕霉素(MTOR)途径激活的哺乳动物靶标对刺激响应刺激的刺激,并通过TOLL样受体或T细胞受体进行刺激。HIF-1 A的存在会影响T细胞子集的命运和功能,尤其是T助手17(TH17)细胞和调节性T细胞的命运和功能。例如,HIF-1 A通过与孤儿受体G T(ROR G T)有关的视黄酸受体的直接转录激活直接参与了Th17 T细胞分化,并将共刺激p300募集到IL-17启动子中(8)。此外,HIF-1促进FOXP3蛋白降解,从而抑制调节性T细胞(Treg)分化。HIF1- A敲除Th17分化并增强Treg的发展(在(9,10)中进行了综述)。 这与MS有关,因为Th17细胞在MS患者中起着重要作用,并在EAE模型中安装MS表型(11)。 在EAE模型中也显示了T细胞特异性HIF1-敲除导致小鼠免受脱髓鞘的保护。 HIF1-敲除小鼠对EAE的耐药性与Th17细胞发育的抑制有关,而有利于Treg分化(12)。 另一项研究表明,使用药物二甲双胍改变Th17/Treg平衡来调节MTOR/AMP激活的蛋白激酶(AMPK)/HIF-1轴改善EAE的发展(13)。HIF1- A敲除Th17分化并增强Treg的发展(在(9,10)中进行了综述)。这与MS有关,因为Th17细胞在MS患者中起着重要作用,并在EAE模型中安装MS表型(11)。在EAE模型中也显示了T细胞特异性HIF1-敲除导致小鼠免受脱髓鞘的保护。HIF1-敲除小鼠对EAE的耐药性与Th17细胞发育的抑制有关,而有利于Treg分化(12)。另一项研究表明,使用药物二甲双胍改变Th17/Treg平衡来调节MTOR/AMP激活的蛋白激酶(AMPK)/HIF-1轴改善EAE的发展(13)。视神经的炎症,称为视神经炎(ON),是视力丧失的常见原因,尤其是在脱髓鞘疾病中(14)。是四分之一的MS病例中的初始症状,最多35%的MS患者经历了
背景:β细胞功能的逐渐恶化是2型糖尿病(T2DM)的特征。我们旨在介绍临床因素对T2DM中β细胞功能的相对贡献。方法:在470名成年人的T2DM队列中(疾病持续时间为0到41年),使用胰岛素生成IN- DEX(IgI),性格指数(DI),口服性格指数(DI O)和β-Cell函数的稳态(HOMA-B)衍生(HOMA-B)的稳态评估估算β细胞功能。 (OGTT)。年龄,性别,疾病持续时间,体重指数,糖基化血红蛋白(HBA1C)水平(在OGTT时),HBA1C曲线下的面积(HBA1C AUC)(HBA1C AUC),HBA1C CV(HBA1C CV)的差异(HBA1C AUC)的曲线(HBA1C AUC)和替代品均与抗差异级别相比。还进行了这些指数的纵向分析。结果:随着时间的推移,Igi,Di,di O和Homa-B随着时间的推移而下降(所有人的p <0.001)。值得注意的是,在多变量回归分析中,HBA1C是影响IgI,DI,DI O和HOMA-B的最重要因素。与HBA1C≥9%相比,DI为1.9-,2.5-,3.7-和5.5倍,在8%的HBA1C(<9%,7%,<8%,6% - <7% - <7%– <7%和<6%)调整后,调整了混淆因子后(P <0.001)。相反,β细胞功能不受抗糖尿病药物,HBA1C AUC或HBA1C CV的类型或持续时间的影响。Igi,di,di o和homa-b的轨迹反映了HbA1c的轨迹。结论:随着时间的流逝,β细胞功能会下降;但是,它是灵活的,在很大程度上受T2DM中最近的糖脂的影响。
Akt¼蛋白激酶B; ALP¼碱性磷酸酶; a-sma¼a -smooth肌肉肌动蛋白; AMPK¼腺苷单磷酸 - 活化的蛋白激酶; ANP¼14钠肽; Arn¼血管紧张素受体Neprilysin抑制剂; AST¼天冬氨酸氨基转移酶; ATF-4¼激活转录因子4; BAX¼Bcl-2相关X蛋白; B-MHC¼B-肌球蛋白重链; bohb¼b-羟基丁酸酯; BNP¼B型纳特里尿肽; CAT¼过氧化氢酶; CFR¼冠状动脉储备; CK-MB¼肌酸激酶MB; CRS¼心脏综合征; CTNT¼心脏肌钙蛋白T;潮湿¼损伤相关的分子模式; dox¼阿霉素; ECG¼心电图; ef¼射血分数; EIF-2a¼真核生物起始因子2 a; Er¼内质网; ERK¼1.1.1/1/14; FGF¼FIMBLAST生长因子; FS¼部分缩短; g-csf¼1/1/14 GM-CSF¼1/1/1/14 GRP78¼葡萄糖调节的蛋白78; HTN¼高血压; I.P.¼腹膜内; IL¼白痴; IL¼白痴; IL¼白痴; iNOS¼诱导一氧化氮合酶; LDH¼14乳酸脱氢酶; LV¼左心室; lvedd¼左心室末端直径; lvesd¼左心室末端音直径; LVIDD¼左心内直径在末端末端;末端收缩处的LVIDS¼左心内直径; MDA¼MALONDIALLEDEDEDE; MMP¼基质金属肽酶; MPO¼髓过氧化物酶;雷帕霉素的mtor¼哺乳动物靶标; mybpc3¼结合蛋白C3; MyD88¼髓样差异反应88; NCD¼正常食物饮食; NF-kb¼核因子kappa-b; NLRP3¼NOD样受体蛋白3;无¼一氧化氮; NOX-1¼NADPH氧化酶1; NOX-2¼NADPH氧化酶2; NRF2¼核因子红细胞2 - 相关因子2; NT-Proanp¼n末端Pro - 心房纳地肽; NT-PROBNP¼N末端Pro - B型纳地尿肽; p38¼p38有丝分裂原激活的蛋白激酶; PARP¼聚(二磷酸腺苷 - 核糖)聚合酶; PERK¼蛋白激酶R样性内质网激酶; PGC¼过氧化物酶体增殖物 - 激活的受体共激活剂; PI3K¼磷酸肌醇3-激酶; PPAR¼过氧化物酶体增殖物 - 活化受体; QTC¼校正的QT; SIRT1¼SIRTUIN1; Sirt3¼Sirtuin3; Smad3¼母亲反对脱皮的同源物3; SOD¼超氧化物歧化酶; TGF¼转化生长因子; TLR9¼Toll样受体9; TNF¼肿瘤坏死因子; XO¼黄嘌呤氧化酶;其他缩写如表1所示。
A.个人陈述我于2004年在Massimo Zeviani博士的实验室中进入了线粒体医学领域的神经学研究所“ C.Besta”在意大利米兰,在2009年,我在Massimo Zeviani博士的监督下被任命为初级团体。从那时起,我的主要研究兴趣一直集中在翻译方面,其最终目标是阐明人类疾病的生物学基础并开发创新和有效的疗法。到此为止,我开发了一系列线粒体疾病的动物模型,并通过使用几种技术来表征它们,从体内测试到研究疾病的神经代谢基础,到基于代谢组学和蛋白质组学的体外方法,以阐明对基因的代谢后果,对人类的疾病进行了疾病,并调查了对人的疾病的代谢后果。基于导致疾病的机制的知识,我使用药理学和基因治疗策略开发了新的治疗方法。这些研究的主要成就是(i)发现乙纳马氏脑病(EE)的致病机制,即最近,由于核基因缺陷,我的实验室证明了基于AAV的基因疗法在其他线粒体疾病中的潜力(Bottani等,Mol Ther,2014; Di Meo等,Gene Therapy,2017,2017,Pinheiro等,Pinheiro等,Mol Ther,Mol Ther,Mol ther,2020,Corrà等,Brain,Brain,20222222222222。这些研究构成了未来几年将这些疗法转移给人类的基本原则的证据。强大的细胞色素C氧化酶抑制剂硫化物(H2S)的积累(Tiranti等,Nat Med,2009)(ii)基于N-乙酰甲基半胱氨酸和甲硝唑高质的疗法的发展,在小鼠和患者中的EE治疗中有效,这是IIS Comcomi et Comcomi,Nat,Nat,Nat,Nat At ant,Nat,Nat At ant,通过使用AMPK激动剂AICAR或NAD+前体烟胺核苷(NR),PGC1ALPHA依赖性线粒体途径有效地改善细胞色素C氧化酶缺乏症的小鼠模型的表型由于有毒化合物的积累,例如EE和线粒体胃肠脑膜炎肌病(MNGIE),基因治疗方法治疗线粒体疾病(Di Meo等,Embo Mol Med,2012; Torres-Torres-Torres-Torronteras等,Mol Ther,2014年)。最后,他与英国剑桥Michal Minczuk合作,通过使用锌指核酸酶,帮助开发了一种基于AAV的方法来纠正特定的mtDNA突变(Gammage等人Nat Med,2018)。我们在我的实验室中进行的其他研究旨在研究通过使用替代氧化酶通过使用替代性氧化酶来解决呼吸链缺损的可能性(Dogan等,Cell Metab,2018),以定义雷帕霉素改善Mitochrial
2型糖尿病(T2DM)估计会影响全球超过4亿人[1]。此外,到2050年,糖尿病的发病率预计将增加和影响三分之一的人[2]。考虑其慢性并发症和死亡率,对T2 DM的病理生理学和治疗的研究也在增加。肌动物在肌肉水平上与胰岛素抵抗有关的肌动物一直是糖尿病病理生理学的各种研究的主题[3]。这些肌动物中的一种,三瓜蛋白53(MG53),也称为TRIM72,是一种属于三方基序(Trim)家族的多孔蛋白,在骨骼和心脏肌肉中大量表达[4]。除了其重要的生理作用外,MG53还被证明是各种疾病的重要致病因素[5]。例如,MG53通过参与心脏,骨骼肌和其他组织的细胞膜修复来维持心脏和骨骼肌完整性[6,7]。细胞内MG53的急性升高还具有针对心肌缺血/再灌注损伤的保护作用[8]。尽管已阐明了其作为膜修复蛋白的重要功能[9],但MG53在许多代谢过程中的作用,尤其是在胰岛素信号通路中,这是很困难的。尽管动物模型中临床前研究的一些研究结果表明,MG53上调可能通过在骨骼肌中引起胰岛素抵抗而导致代谢性疾病,例如T2 DM和肥胖[10,11],但也有相反结果的研究。尽管假设MG53升高可能是T2 DM的致病因素[10],但许多研究尚未建立胰岛素抵抗和MG53之间的因果关系[12-14]。因此,MG53已被证明对许多疾病既有益和负面影响。迄今为止,在动物模型中,几乎所有关于MG53与胰岛素敏感性和DM相关的研究。尽管临床前研究矛盾,但已建议MG53是动物模型中糖尿病的一种新型致病因素。观察人类研究中其与糖尿病,糖尿病并发症和血糖控制的关系可能为治疗2型糖尿病及其并发症的新途径开辟了新的途径。在我们的研究中,我们的目的是检查患者组2型DM的患者组诊断与没有代谢综合征和糖尿病的健康对照组之间的血清MG53水平差异,并确定患者组中糖尿病并发症与血糖控制和MG53水平之间的关系。
呼吸道感染,尤其是病毒感染以及其他外部环境因素,已显示出深远影响肺中巨噬细胞种群。尤其是,肺泡巨噬细胞(AMS)是呼吸道感染期间重要的前哨,其消失为招募的单核细胞(MOS)开辟了一个细分市场,以区分居民巨噬细胞。尽管这个话题仍然是激烈辩论的重点,但AMS的表型和功能在炎症性侮辱后重新殖民地殖民地的殖民地(例如感染)似乎部分取决于其起源,但也取决于局部和/或系统的变化,这些变化可能在表观遗传学水平上被划界。呼吸道感染后的表型改变具有长期塑造肺免疫力的潜力,从而导致有益的反应,例如保护过敏性气道侵入或对其他感染的保护,但与免疫病理发展相关时也有害反应。本综述报告了病毒诱导的肺巨噬细胞功能改变的持续性,并讨论了这种烙印在解释个体间和终生免疫变化中的重要性。
