绝对最大额定值 如果需要军用、航空航天专用器件,请联系美国国家半导体销售办事处、分销商,了解供货情况和规格。 LM2900、LM3900 LM3301 电源电压 32 V DC 28 V DC g 16 V DC g 14 V DC 功耗 (T A e 25 � C)(注 1) 模压 DIP 1080 mW 1080 mW S�O� 封装 765 mW 输入电流 � I IN a 或 I IN b 20 mA DC 20 mA DC 输出短路持续时间 � 一个放大器 连续 连续 T A e 25 � C(参见应用提示) 工作温度范围 b 40 � C 至 a 85 � C LM2900 b 40 � C 至 a 85 � C LM3900 0 � C 至 a 70 � C 存储温度范围 b 65 � C 至 a 150 � C b 65 � C 至 a 150 � C 引线温度(焊接 10 秒) 260 � C 260 � C 焊接信息 双列直插式封装焊接(10 秒) 260 � C 260 � C 小型封装气相(60 秒) 215 � C 215 � C 红外线(15 秒) 220 � C 220 � C 有关焊接表面贴装设备的其他方法,请参阅 AN-450“表面贴装方法及其对产品可靠性的影响”。 ESD 耐受性(注释 7) 2000V 2000V
图形符号说明...................................... 2 图形符号说明 Erklärung der Bildsymbole Explicación de símbolos 目录 ..... .. ................................................. 3 目录 Inhaltsverzeichnis Tabla de las materias符合性声明 ................................................ 4 符合性声明 Konformitätserklärung Declaración de Conformidad介绍 ................................................. .. 5–8 前言 简介 前面板 .................................................................. ......................7 前面板 Vorderseite 前面板 后面板 .................................. ................................................ 8 后面板 Rückseite 面板后部功能和设置..................................................9– 16 特征及其用途 AUSSTATTUNG & EINSTELLUNGEN调整和特性 削波限制 ................................................ ......................9 削波限制器 削波限制器 Limitador de picos 输入滤波器 ....................... . ...................................................... 10 滤波器输入 Eingangsfilter 输入滤波器并行输入模式....................................................... ..11 并行输入模式 Eingangsparallelschaltung 并行输入模式 桥接单声道模式 .................................................. .. ..............13 单声道桥接模式 Monobrückenbetrieb Modo puenteado en mono 立体声、并行输入和桥接单声道模式之间有什么区别?........................................ . ...................15 立体声、并行和桥接模式有何区别?Unterschiede zwischen 立体声、并行和单声道模式 立体声、并行输入和桥接单声道模式之间有什么区别?
卫星通信 (SATCOM) 系统正在经历多项技术变革,传统设计方法正转向更高的频率和更宽的带宽。新技术正在发挥作用,例如 GaN 放大器,它大大改善了 SWaP,并提高了效率和可靠性。不同的天线技术也极大地影响了系统的设计,包括相控阵、超材料和 3D 打印天线。5G 和物联网服务的推出也影响了 SATCOM 市场,因为各公司正在寻找方法利用这些市场的星座作为商业增长的机会。新太空市场的增长也影响了需要低成本、更小尺寸和更轻重量的设计,尤其是对于小型卫星而言。
Elite RF 由前摩托罗拉工程领导于 2014 年创立,在设计和制造固态射频功率放大器和高功率微波发生器方面树立了极高的标准,可提供现成的现货和定制设计解决方案。凭借内部工程团队和质量控制的 22,000 平方英尺制造设施,我们的核心优势在于我们对协作工程、稳健设计、高制造质量和准时交付的承诺。我们致力于提高您的运营绩效,旨在为您在快速发展的射频领域提供显著的竞争优势。
商用和军用系统将继续在整个电磁频谱范围内发展。二十年来,联邦政府对雷达频段 L 至 Ku 的频谱要求证实了这一要求的必要性。采用 GaN 器件的固态功率放大器具有五到十倍的功率处理能力,是此类应用的理想选择,使其成为目前使用 TWT 的系统中合适的替代品。尽管 GaN 技术在这些应用中的使用正在增长,但 CTT 的 GaAs 功率放大器继续在低功率低压系统以及要求高线性度的系统应用中提供特定优势 - GaAs 具有长期的可靠性、低成本、广泛可用性和出色的整体性能记录。不断涌现的应用程序的性质依赖于数字技术的进步所带来的复杂性
在许多应用中,包括 RF 设计的 VGA/PGA,具有 dB 线性(dB 尺度上的线性关系)增益特性的放大器是首选,因为它在 AGC 环路中使用时可以实现恒定的稳定时间 [13–15]。这种关系在 BJT 技术中很容易实现,其中增益与控制信号呈指数关系 [16–18]。对于 MOS 器件,尽管指数关系存在于亚阈值区域并可提供较宽的增益控制范围 [19],但饱和区有利于降低噪声并增加带宽 [20],并且由于后者的平方关系,需要指数 VI 转换电路来实现指数增益控制关系 [21]。实现指数转换器的一些方法采用 BiCMOS 技术[22–24]、寄生双极晶体管[20]或使用提供伪指数函数近似的 CMOS 电路[25,26]。
在图4,M1和M2的电路中是N型MOS晶体管,M3和M4是P型MOS晶体管。这些晶体管在CMOS拓扑中配置差分放大器,以最大程度地减少功率消耗[6]。偏置电路是由编程电流(I Ref)控制的镜电路(M5和M6),可为差分和通用源放大器提供适当的偏置电流。补偿电路涉及频率补偿的技术,其中使用这些技术的目的是避免产生正面反馈的意外创建,从而导致Op-Amp输出中的振荡并控制对单位步骤功能的响应[7]。频率补偿技术包括磨坊主补偿技术,无效电阻技术以及电压缓冲液或电流缓冲技术。
长光纤放大器采用超过 100 米的有效光纤长度,其产生是因为需要在宽波长范围内放大光信号,而这超出了传统光纤放大器的能力。这一领域的主要驱动力来自电信行业,该行业推动网络容量增长的动力指向了标准光传输光纤在以前未利用的波长范围内的相对较低的衰减。我们发现,L 波段 (1570 – 1611 nm) 1 中的波长可以以与 C 波段波长 (1530 – 1569 nm) 类似的方式用掺铒光纤放大器 (EDFA) 进行放大。L 波段放大器设计中最明显的区别是,与传统 C 波段放大器相比,需要较长的掺铒光纤 (EDF) 才能获得相当的增益。因此,在长放大器内,我们可能会发现发生有害光学非线性效应的理想环境。
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。
Josephson行动波参数放大器 / Guarcello的建模,Claudio;瓜里诺(Guerino)Avallone;卡洛男爵; Borghesi,Matteo;头发,西尔维亚; Carapella,Giovanni;安娜·保罗(Anna Paola)装满; Carusotto,Iacopo; Cian,Alessandro; Daniele的Gioacchino; Enrico,Emanuele; Paolo的Falferi;法萨(Fasolo),卢卡(Luca); Faverzani,Marco;费里(Ferri),埃琳娜(Elena); Filatrella,Giovanni; Gatti,Claudio; Giachero,Andrea; Damiano Giubertoni; Veronica Granata;希腊,安吉洛;拉布兰卡(Danilo);狮子座,安吉洛; Ligi,卡洛; Maccarrone,Giovanni; Federica Mantegazzini; Margesin,Benno; Maruccio,朱塞佩; Mauro,君士坦丁; Mezzena,Renato;莫特杜罗,安娜·格拉齐亚; nucciotti,安吉洛;卢卡·奥伯托(Oberto); Origo,卢卡; Pagano,Sergio; Pierro,Vincenzo; Piersanti,卢卡; Rajteri,毛罗; Alessio Rettaroli;里萨托,西尔维亚;范特,安德里亚; Zannoni,马里奥。- 在:IEEE超导性上的IEEE交易。- ISSN 1051-8223。-33:1(2023),pp。1-7。[10.1109/tasc。 2022.3214751]