kbg综合征是一种罕见的常染色体显性遗传疾病,其特征是上部切牙牙齿扩大,独特的颅面特征(例如三角形的脸,突出的鼻桥,较薄的上唇),骨骼骨骼表现(包括短状态,短身份,较短的骨骼,延迟的骨骼,骨骼延迟,各种肋骨和垂直异常异常)和智力障碍。KBG综合征的表型光谱高度多样。根据文献,据报道,永久性上门牙的大牙齿有85% - 95%的KBG综合征患者,使其成为最普遍的牙齿特征。在大约25% - 31%的患者中观察到了听力障碍。产后短身材是KBG综合征个体中的常见特征,并且有关于生长激素治疗的反应的有希望的报道(Ho等,2022)。非症状或轻度症状通常被诊断或未被注意到。KBG综合征的患病率在各个族群之间并没有差异,尽管它遵循常染色体显性遗传模式,但出于未知的原因,它在男性中比男性更频繁地发生(Choi等,2022)。它是由ANKRD11基因的主要变体或包含Ankrd11基因的16q24.3微缺失引起的(Martinez-Cayuelas等,2022; Niihori等,2019)。ANKRD11基因是位于16q24.3染色体上的基因,包括11个外显子。在功能上,ANKRD11充当至关重要的共同
57 先天性心脏缺陷 (CHD) 是最常见的出生缺陷类型,全球发病率为 58 1% (Wu et al., 2020)。CHD 中很大一部分是圆锥动脉干缺陷,59 这是由于心脏流出道 (OFT) 重塑不当引起的,OFT 是连接心室和咽弓动脉 (PAA) 的胚胎结构 (Keyte and 61 Hutson, 2012; Neeb et al., 2013)。在胚胎发生过程中,OFT 被重塑为成熟的主动脉和肺动脉,以分离含氧血液和缺氧血液的循环。63 该过程由胚胎心脏的不同组织之间的相互作用协调:64 第二心脏场衍生细胞、OFT 腔内心内膜细胞和心脏神经嵴细胞 (CNCC)。 CNCC 功能失调是许多圆锥动脉干缺陷的主要原因 66 ,也是许多已知的多系统发育障碍的诱因(Neeb 等人,2013;Vega-67 Lopez 等人,2018)。68 CNCC 起源于神经管边界,并迁移到 PAA 和 OFT,在那里 69 它们促进血管重塑并形成动脉平滑肌细胞内壁 70 (Keyte and Hutson,2012)。填充 OFT 垫的 CNCC 融合在一起形成 71 主动脉肺动脉 (AP) 隔,该隔从 OFT 的远端边缘发展直至与室间隔融合 72,形成主动脉和肺动脉两条不同的血管。 73 在小鼠中,OFT 分隔发生在胚胎第 11.5 天 (E) 和第 13.5 天之间 (Krishnan 等人,74 2014)。75 神经嵴发育需要复杂的基因表达时空调控。76 大多数研究集中在信号通路和转录因子上,而 77 表观遗传调控的研究相对不足 (Martik and Bronner, 2017; Neeb 等人,78 2013; Stefanovic 等人,2021; Yan 等人,2021)。尽管如此,已发现一些表观遗传调节因子对 CNCC 的正常发育至关重要,这些调节因子与各种先天性疾病有关,包括 Coffin-Siris (Brg1)、CHARGE (CHD7) 和 Williams (BAZ1B) 综合征 (Barnett 等人,2012 年;Li 等人,2013 年;Yan 等人,2021 年;Yan 等人,82 2020 年)。83 染色质调节因子对于基因表达的时空调控至关重要,这对于协调复杂的 OFT 重塑过程必不可少,尽管神经嵴辅助心脏发育中的大部分过程仍不清楚 (Yan 等人,2021 年)。 ANKRD11 86(锚蛋白重复域 11;以前称为 ANCO1)是一种染色质调节剂,可募集 87 组蛋白乙酰化修饰蛋白,例如组蛋白去乙酰化酶 HDAC3 和 P/CAF 88(p300/CBP 相关因子)乙酰转移酶复合物亚基,以调节全局基因 89 表达(Gallagher 等人,2015 年;Li 等人,2008 年;Zhang 等人,2004 年)。90 ANKRD11 或含有 ANKRD11 的 16q24.3 微缺失中的杂合变异会导致 KBG 综合征(OMIM 91 #148050),一种常染色体显性多系统发育障碍。患有 KBG 92 综合征的患者表现出整体发育迟缓、身材矮小、颅面缺陷和智力 93 障碍(Digilio 等人,2021 年;Gnazzo 等人,2020 年;Goldenberg 等人,2016 年;Handrigan 等人,94 2013 年;Low 等人,2016 年;Murray 等人,2017 年;Ockeloen 等人,2015 年;Sirmaci 等人,2011 年;95 Willemsen 等人,2010 年)。约 40% 的患者有心血管缺陷,包括 96 主动脉缩窄、动脉导管未闭、瓣膜狭窄和室间隔缺损 (VSD) 97 (Digilio 等人,2021;Guo 等人,2022;Kierzkowska 等人,2023)。值得注意的是,这些心血管 98 缺陷表明 CNCC 功能可能失调 (Neeb 等人,2013;Vega-Lopez 等人,2018)。然而,Ankrd11 在 CNCC 命运或心脏发育中的作用尚不清楚。100
forn yuen stessman ruzo 41%50%37%41%44%adcy3 adcy3 adcy5 adnp adnp adnp adnp adnp adnp agap2 agap2 agap2 akap9 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ap2s1 ariD1b ARID1B ARID1B ARID1B ARID1B Ash1l Ash1l Ash1l Ash1l Asxl3 ASXL3 ASXL3 Babrb3 Bcl11a Bcl11a Bcl11a BRIN2B BTRC CACNA1E C16ORF13 CELF4 CACNA2D3 CACNA2D3 CACNA2D3 CASK CAPN12 CDC42BPB CCSER1 CHD2 CHD2 CHD2 CHD2 CHD2 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CIC CIC CIC CMPK2 CLASP1 CLASP1 COL4A3BP CNABP CNABP CTNNNB1 CTNNB1 CTNNB1 CTNNB1 CTNB1 CTNBP2 CUL3 CUL3 CUL3 DEAF1 DDX3X DIP2C DDX3X DDX3X DDX3X DNMT3A DNMT3A DNMT3A DNMT3A DIP2A DNMT3A DPYSL2 DPYSL2 DLGP4 DLGAP4 DLGAP1 DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DOCK8 DSCAM DYSCAM DYSC1H1 DSCAM DSCAM DSCAM DRKAM DYRK1A DYRK1A DYRK1A dyrk1a dyrk1a dyrk1a EIF3G FMR1 FAM47A ERBIN ETFB FAM98C FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP2 GABRB3 GFAP GFAP GIGYF1 GIGYF1 GIGYF1 GIGYF1 GIGYF2 GIGYF1 GNAI1 GNAI1 GNAI1 GRIN2B Grin2B Gria1 Irf2BPL KDM6A HIVEP3 GRIN2B KCNQ3 ILF2 ILF2 KDM5B ITPR1 INTS6 KDM6B Kdm6B Kdm6B Kiaa0232 Kiaa2022 Katnal2 Katnal2 KMT2A KMT2A KDM5B KMT2C KMT2C KMT2C KMT2C KMT2E KMT2E KMT2E KMT5B KMT5B KMT5B KMT5B KMT5B KMT5B LDB1 LAMC3 MFRP MAP1A MECP2 MECP2 MECP2 MECP2 MECP2 MLANA MBD5 MED13L MED13L MED13 MED13 MED13L div>
成人T细胞白血病 - 淋巴瘤(ATLL)是由人类T细胞白血病1型(HTLV-1)驱动的侵略性恶性肿瘤。尽管来自西半球(非洲加勒比海和南美)的患者面临较差的预后,但我们对ATLL分子驱动因素的了解主要来自日本研究。我们进行了多摩变分析,以阐明西方队列中ATLL的GE NOMIC景观。反复缺失和/或涉及FOXO3,ANKRD11,DGKZ和PTPN6的破坏突变,将这些基因视为潜在的肿瘤抑制子。RNA序列,已发表的功能数据和体外测定法分别支持ANKRD11和FOXO3作为ATLL中T细胞增殖和凋亡的调节剂的作用。Sur Vival数据表明,AnkRD11突变可能会赋予更糟糕的预后。除了急性和淋巴亚型外,日本和西方队列还显示出不同的分子模式。gata3删除与慢性病病例有关。IRF4和Card11突变。我们的发现揭示了日本和西部ATLL患者之间的新型ATLL驱动基因和临床相关的差异。
这项研究旨在评估CNV-SEQ和WES在产前诊断中检测先天性心脏病(CHD)的遗传原因的效率,并比较分离的和非分离的CHD病例之间的CNV检测率。我们对产前超声诊断为CHD的118名中国胎儿进行了回顾性研究。参与者接受了CNV-Seq,并在必要时进行了WES检测染色体和单核苷酸变化的WES。致病性或可能的致病性染色体异常的总体检测率为16.9%,包括7.6%的非整倍性和9.3%的致病性/可能的致病性拷贝数变化(CNV),主要是22q11.2 Deletion综合征(54.4%)。CNV-SEQ检测P/L P CNV的敏感性和特异性分别为95%和100%。CNV-SEQ在检测核分型的染色体异常方面提供了6.7%的提高。在TM67,PLD1,ANKRD11和PNKP等基因中进一步鉴定出显着的单个核苷酸和小的indel变异,在CNV阴性的情况下,诊断率提高了14.8%。未分离的冠心病病例表现出更高的可检测染色体异常率(32.4%vs. 9.9%,p = 0.005),强调了这些疾病的遗传复杂性。CNV-SEQ和WES的综合使用提供了一种全面的方法来对CHD进行产前遗传测试,从而揭示了可能影响临床管理和父母决策的显着遗传原因。这项研究支持这些晚期基因组技术在常规产前诊断中的整合,以增加与CHD相关的因果遗传变异的检测诊断产率。
