摘要 — 癫痫是一种以反复发作、无诱因癫痫发作为特征的神经系统疾病,早期诊断对于有效的管理和治疗至关重要。然而,由于癫痫发作的微妙性质和大脑活动模式的复杂性,癫痫的诊断,特别是在早期阶段,仍然具有挑战性。在本研究中,我们引入了医学信息视觉转换器 (MIVT),这是一种深度学习架构,专门设计用于从多模态神经影像数据中改善早期癫痫诊断。我们的模型整合了医学知识和最先进的视觉转换器 (ViT) 的见解,以提高癫痫发作检测和定位的准确性和可解释性。MIVT 利用脑电图 (EEG) 丰富的空间和时间特征,使系统能够学习与早期癫痫发作前兆和生物标志物相对应的判别特征。我们在大型多模态癫痫数据集上证明了 MIVT 的有效性,其性能优于传统深度学习模型,即 Inception V3、ResNet-50、VGG-16 和 AlexNet,优势高达 17%。我们的结果表明,MIVT 模型的表现优于现有技术,诊断准确率为 93.55%,特异性为 88.89%,AUC 为 98.72%,精确率为 86.67%,召回率为 100%。它显示出弥合机器学习模型与临床实践之间差距的潜力。
电力变压器是电力供应系统的重要组成部分。变压器将一个电压等级转换为另一个电压等级。在此能量传输过程中,变压器绕组中会发生损耗。这些损耗会转化为热量,从而烧毁变压器绕组。为了克服这些问题,冷却是必需的。变压器的主要故障是由于变压器在工作过程中过热造成的。变压器中产生热量的主要来源是绕组和铁芯中的铜损(I²R 损耗)。内部损耗(如磁滞、涡流、高环境温度和太阳辐射)也会产生热量。消除和降低变压器的热量有助于提高变压器的高效工作、延长使用寿命和提高效率。用于降低变压器温度的各种冷却剂包括空气、合成油、矿物油等。如果变压器产生的热量没有得到适当消散,温度就会持续升高,从而损坏绝缘层,进而损坏变压器。变压器的运行温度仅比额定温度高 10°C,就会使变压器的寿命缩短 50%。
为了了解大脑功能和精神障碍,人脑通常被建模为感兴趣区域 (ROI) 及其连接的网络。最近,基于 Transformer 的模型已经针对不同类型的数据(包括图)进行了研究,结果显示可广泛提高性能。在这项工作中,我们研究了基于 Transformer 的大脑网络分析模型。在数据的独特属性的驱动下,我们将大脑网络建模为具有固定大小和顺序的节点的图,这使我们能够 (1) 使用连接配置文件作为节点特征来提供自然且低成本的位置信息,以及 (2) 学习 ROI 之间的成对连接强度,并在个体之间使用有效的注意力权重,从而对下游分析任务具有预测性。此外,我们提出了一种基于自监督软聚类和正交投影的正交聚类读取操作。该设计考虑了决定 ROI 组之间相似行为的底层功能模块,从而产生可区分的聚类感知节点嵌入和信息图嵌入。最后,我们在唯一一个公开可用的大型脑网络数据集 ABIDE 上重新标准化了评估流程,以便对不同的模型进行有意义的比较。实验结果表明,我们提出的 B RAIN N ETWORK T TRANSFORMER 在公开的 ABIDE 和我们受限的 ABCD 数据集上都有明显的改进。实现可在 https://github.com/Wayfear/BrainNetworkTransformer 上获得。
变压器是一种在静止状态下将能量从一个级别转换为另一个级别的设备。本项目的目的是通过使用负载共享来防止变压器过载。变压器过载时,其效率会降低,绕组会变热,甚至可能烧毁。负载共享的结果是,变压器受到保护。这将通过使用微控制器将另一个变压器与 Arduino 并联来实现。两个控制器都将第一个变压器上的负载与参考值进行比较。当负载超过参考值时,第二个变压器将共享剩余负载。如果负载超过两个变压器的额定值,系统将关闭。每当通过 GSM 接收到通信时,操作员都会收到它。
“创新就是变革”:国家宪兵变革服务局局长兼本期科学总监 Christophe Jacquot 在本期作品的筹备会议上向我们推出了这一公式。我们进一步推论,创新就是敢于创新!在发明、想象未来时,通常会用一个反射性短语来完成这一陈述:“警察是一个传统主义者,他不喜欢被人欺负。”平凡?现实 ? 该机构理所当然地非常重视它的价值观、它的记忆、它的原则。然而,我们绝非谨慎和无所作为:事实上,宪兵队早已接受了创新文化。因为这并不否定价值观,相反,它强化了价值观!
该项目的目的是在过载情况下自动分配变压器的负载,保护变压器免受损坏并提供不间断电源。由于过载,电流过大,绕组过热,可能烧毁,因此效率会下降。因此,通过微控制器并联另一个相同额定值的变压器,通过分配负载来保护变压器。微控制器将第一个变压器上的负载与参考值进行比较。当负载超过参考值时,第二个变压器将共享额外的负载。因此,两个变压器高效工作并防止损坏。在这个项目中,三个模块用于控制负载电流。第一个模块是传感单元,用于感测负载电流,第二个模块是控制单元。最后一个模块是微控制器单元,它将读取来自传感器模块的模拟信号并执行一些计算,最后向继电器发出控制信号。该项目的优点是保护变压器、不间断电源、短路保护和维护目的。
注:上列隔离变压器的一部分是根据 IEC 60950“信息技术设备安全”或 IEC 61558“电力变压器、电源、电抗器和类似产品安全”制造的。它们都具有加强绝缘。过压类别、污染程度和绝缘材料组的分类可从数据表中获取。
• IEC 60076-1:电力变压器 - 第 1 部分:总则; • IEC 60076-3:电力变压器 - 第 3 部分:绝缘水平、介电试验和空气中的外部间隙; • IEC 60076-5:电力变压器 - 第 5 部分:承受短路能力; • IEC 60076-6:电力变压器 - 第 6 部分:电抗器; • IEC 60076-8:电力变压器 - 第 8 部分:应用指南; • IEC 60076-10-1:电力变压器 - 第 10-1 部分:声级测定 - 应用指南; • IEC 60076-11:电力变压器 - 第 11 部分:干式变压器; • IEC 60076-12:电力变压器 - 第 12 部分:干式电力变压器的负载指南; • IEC TS 60076-19:电力变压器 - 第 19 部分:电力变压器和电抗器损耗测量不确定度确定规则; • IEC TR 60616:电力变压器的端子和分接标记; • IEC 61378-1:换流变压器 - 第 1 部分:工业用变压器; • IEC 61378-3:换流变压器 - 第 3 部分:应用指南; • IEC 62032:移相变压器的应用、规范和测试指南; • IEC 60529:外壳防护等级(IP 代码); • IEC 60068-3-3:环境试验 - 第 3-3 部分:指南 - 设备抗震试验方法; • EN 50588-1:2015:中型功率变压器 50 Hz,设备最高电压不超过 36 kV - 第 1 部分:一般要求;
I 反激变压器系列 I 变压器/控制电路交叉参考列表 I 1 至 9 W EE 16 74090 – 74091 – 74092 – 74093 – 74094 – 74095 I 1 至 6 W EE 16 74000 – 74001 – 74002 – 74003 I 6 至 12 W EE 16 74010 – 74014 – 74015 I 10 至 18 W EL 19 74020 – 74021 – 74023 I 12 至 24 W EF 20 74080 – 74081 – 74082 I 15 至 30 W EE 25 74030 – 74032 I 35 至 60 W ETD 29 74040 I 35 至 60 W ERL 28 74043 I 60 至 90 W ETD 34 74050 I 70 至 140 W ETD 39 74060 I 120 至 180 W ETD 44 74070
尺寸 E16 - 2 输出:5 和 12v - 反激变压器 初级/次级绝缘 ≥ 4000V 初级/辅助绝缘 ≥ 1500V 初级/次级爬电距离 ≥ 6mm 环境温度 < 70°C 结构符合 IEC950、IEC335、IEC61558 加强绝缘标准 仅使用 UL94-V0 列出的材料