数字断路器和智能传感器:集成到条件基础资产管理云工具的示例 - A3.221 法国 GE 维护策略概览 带有大量传感器 + 电子控制的数字断路器 温度、位置、电机电流、运行能量…… 具有机械、热和介电模型的云端数字孪生 基于 MatLab 的数字孪生架构,背后是 Ansys 提供与健康指数 0 - 5 相关的仪表板 在需要维护、过载、老化时发出警告 集成到站内的 AM 中以预测更换、维护
总之,对电动滑板车底盘设计和分析的研究突出了几个关键的改进领域,以优化性能、效率和耐用性。通过 SolidWorks 建模和 Ansys 分析,我们确定了关键挑战:重量过重、应力集中、耐久性、操控性和乘坐质量材料选择、缺乏优化解决这些领域对于未来设计开发更高效、耐用和用户友好的电动滑板车底盘至关重要。利用轻质、高强度的材料、优化几何形状和采用先进的模拟工具可以大大提高滑板车的行驶里程、操控性和使用寿命。
随着对行业应用中电动机功率和效率的需求不断提高,电动机在操作过程中产生的热量已成为一个关键挑战。有效的冷却系统是为了维持电动机的性能和寿命。根据热电制冷原理制定了一种新的电机冷却系统。提出的热电冷却系统(TEC)的主要策略是使用热电冷却器(TEC)通过热传导原理冷却电动机。使用数值模拟和实验测量的组合来比较在不同的工作条件下的气冷和热电再进行的性能。实验和ANSYS模拟已显示
数字断路器和智能传感器:集成到条件基础资产管理云工具的示例 - A3.221 法国 GE 维护策略概览 带有大量传感器 + 电子控制的数字断路器 温度、位置、电机电流、运行能量…… 具有机械、热和介电模型的云端数字孪生 基于 MatLab 的数字孪生架构,背后是 Ansys 提供与健康指数 0 - 5 相关的仪表板 在需要维护、过载、老化时发出警告 集成到站内的 AM 中以预测更换、维护
● 电气工程、物理学、航空航天工程或相关领域的硕士学位或更高学位。 ● 具有雷达系统工程经验,尤其是脉冲相控阵技术。 ● 具有数字信号处理、射频/微波工程和天线设计方面的丰富背景。 ● 具有使用雷达仿真和分析软件工具(如 MATLAB、ANSYS 或类似软件)的经验。 ● 熟悉太空环境挑战,包括辐射对电子系统的影响。 ● 具有出色的分析、解决问题以及沟通和谈判技巧。 ● 能够在全球团队中协同工作并在最低限度的监督下管理项目。 ● 愿意根据需要出差
如何优化系统中能源的使用?管理能源科学在学习如何进行能源审核,分析和设计中起着重要作用,以使能源在行业的过程中更有效,或者有效地在建筑物,行业和其他建筑物中使用能源。学生还学习控制系统,这些控制系统有助于自动监视,控制和对系统采取行动,以实现最佳的能源效率。在Aspen One Enermal Sigulation软件,ANSYS Fluent等的协助下,预计将为学生提供有价值的经验,以分析可再生能源行业的优化案例。
增材制造 (AM) 已成为一项重要技术,并已用于航空航天、汽车和医疗应用,带来新的设计和新材料发展。本次研讨会旨在让参与者掌握表征增材制造材料、使用 Ansys、COMSOL 或 Aba q us 完成增材制造的数值建模和模拟所需的技能。通过实践培训,参与者将探索与金属增材制造相关的概念设计、决定性制造和建模概念。此外,他们还将学习使用模拟工具来分析和优化制造设计。凭借这些领域的坚实基础,参与者可以实施设计、模拟和打印方面的最佳实践,以提高产品质量和效率。 Etienne Martin 教授
控制热和流动条件以提供所需的加热或冷却功率。GRZ technologies 开发了一种数值程序,使用 ANSYS Fluent 和内部开发的模型来模拟一系列系统。压缩机或存储几何形状采用参数建模、网格划分和模拟。对于工业规模的氢气压缩机,温度和流场的空间分布是从数值模拟中获得的(见图 1)。热介质流速和分布在确定金属氢化物内的温度分布以及最终压缩机的性能方面起着重要作用。使用参数模型,可以探索降低制造和运营成本的各种选项,同时实现所需的氢气输送压力、流速和容量。
在这项研究中,通过比较提出的冷却通道与蛇形冷却通道的热量耗散能力和电池堆栈中U形冷却通道的热量耗散能力来评估圆柱形锂离子电池组的热量耗散系统。提议的冷却通道采用了蛇形设计,其中包括通过电池堆栈的额外途径,从而增强了与电池的热量交换。在第二个配置中,将通道分叉为两个支流,将流体流体交替出现在另一种流出中,从而产生了逆流配置。利用ANSYS Fluent进行模拟和分析,我们确认所提出的设计提供了出色的散热性能,这归因于增加的接触面积。
具有高计算性能的 CPU 的发热问题一直是一个非常严重的问题,会降低其性能。为了确保 CPU 发挥最大潜能,必须将其温度保持在 80°C 以下。由散热器和风扇组成的强制对流冷却器被认为是满足 CPU 工作温度要求以确保其最大性能的最有效方法。使用计算流体动力学 (CFD) 数值方法和拓扑优化(使用 ANSYS Mechanical 和 ANSYS Fluent)开发了一款 CPU 冷却器的散热器设计,该设计搭配了气流速度为 80 立方英尺/分钟 (CFM) 的风扇,适用于在 25°C 环境温度下工作时最大发热量为 380 瓦的 CPU。对各种翅片轮廓、翅片排列、翅片数量和散热器材料进行了比较分析。将比较分析的最佳结果结合起来,提出了一种能够将 CPU 温度保持在 80°C 以下的基本设计,这是确保最大计算性能的要求。确定采用弧形布置配置的带覆盖矩形板翅片的 30 片散热器来提供最大的冷却性能。在材料方面,碳化硅的最低 CPU 温度为 78°C,其次是铜,为 84°C。碳化硅散热器成功满足了最大 CPU 性能的要求。铜散热器不太可能导致 CPU 故障,但它不符合最大 CPU 性能的条件。此外,然后使用拓扑优化优化此基础设计以降低材料成本,结果材料成本降低了 13%,而冷却性能仅降低了 0.32%。在未来的研究中,可以通过将风扇设计和各种 CPU 负载条件纳入设计参数来改进冷却器的整体设计。