摘要 2008 年 10 月 7 日,一架空客 A330-303 飞机(注册号 VH-QPA,航班号为澳航 72)从新加坡起飞,执行定期客运服务,飞往西澳大利亚珀斯。当飞机在 37,000 英尺的高度巡航时,飞机的三个大气数据惯性参考装置 (ADIRU) 之一开始向其他飞机系统输出所有飞行参数的间歇性错误值(尖峰)。两分钟后,由于迎角 (AOA) 数据出现尖峰,飞机的飞行控制主计算机 (FCPC) 命令飞机俯冲。机上 303 名乘客中至少有 110 人和 12 名机组人员中有 9 人受伤;其中 12 名乘客受重伤,另有 39 人送往医院接受治疗。虽然 FCPC 算法处理 AOA 数据通常非常有效,但它无法处理一个 ADIRU 的 AOA 出现多个峰值且间隔 1.2 秒的情况。该事件是 A330/A340 飞机超过 2800 万飞行小时中唯一已知的因该设计限制导致俯冲命令的例子,飞机制造商随后重新设计了 AOA 算法,以防止再次发生相同类型的事故。每个间歇性数据峰值可能都是在 LTN-101 ADIRU 的中央处理器 (CPU) 模块将一个参数的数据值与另一个参数的标签相结合时产生的。故障模式可能是由
电视监视器 (TVM) ................................................................................................................................................115 雷达告警接收器 (RWR) ................................................................................................................................116 空速指示器 ................................................................................................................................................116 攻角 (AoA) 指示器 ................................................................................................................................117 攻角 (AoA) 索引器 ................................................................................................................................117 姿态指引指示器 (ADI) ................................................................................................................................117 水平情况指示器 (HSI) ................................................................................................................................118 高度计 .............................................................................................................................................................119 垂直速度指示器 (VVI) ................................................................................................................................119 加速度计 ................................................................................................................................................119 级间涡轮温度指示器 ................................................................................................................................120 发动机核心速度指示器 ................................................................................................................................120 油压指示器 ................................................................................................................................................121 风扇速度指示器................................................................................................................................121 燃油流量指示器..............................................................................................................................122 襟翼位置指示器..............................................................................................................................122 空气制动器位置指示器......................................................................................................................123
• 是美国公民或持有美国执业许可的外国公民(联系医疗官员招聘人员了解详情) • 毕业于美国医学会 (AMA) 或美国医师协会 (AOA) 认可的合格医学院 • 已完成美国医学会 (AMA) 或美国医师协会 (AOA) 批准的课程一年的研究生医学教育(当前正在接受培训的实习生也可以申请) • 加入海军医疗队一年内持有有效的州医疗执照 • 愿意服现役至少四年 • 年龄在 18 至 62 岁之间(62 岁以上的合格候选人将根据具体情况考虑) • 身体状况良好并通过全面体检
实验设置................................................................................................................60 载荷数据................................................................................................................62 载荷数据讨论....................................................................................................62 振动探索.................................................................................................................64 感兴趣的 AOA 的选择................................................................................................66
支持各种类型的测距和定位:基于飞行时间(ToF)的双向测距(TWR)、到达时间差(TDoA)、3D 到达角(3D AoA)
轴 a x 重心沿 x B 轴的“局部”(非重力)加速度分量 a z 重心沿 z B 轴的“局部”(非重力)加速度分量 n x 沿 x B 轴的载荷系数,等于 a x /g n z 沿 z B 轴的载荷系数,等于 a z /g g 级 评估局部加速度大小的指数 ¯ c 平均气动弦长 S 机翼面积 AR 展弦比 e 奥斯瓦尔德效率因子 C L 升力系数 C L 0 零迎角时的升力系数 C L α 由于迎角导致的升力系数变化 C L q 由于俯仰速度导致的升力系数变化 C L δe 由于升降舵导致的升力系数变化 C D 阻力系数 C D 0 零升力阻力系数 C D i 诱导阻力系数 C m 俯仰力矩系数 C m 0 零升力俯仰力矩系数 C m α 由于迎角导致的俯仰力矩系数变化
由于室内环境中存在许多反射,基于 RSSI 的测距本质上是不准确的。通过结合基于相位的距离估计协议和先进的信号处理,imec 测距技术可以准确地将视线分量与多径分离。结果是一个具有亚米级精度的强大测距系统。与测向(也称为 AoA,到达角)不同,imec 距离测量仅使用两侧的单个天线进行。通过将多个天线与跟踪相结合,距离测量的精度甚至可以远远优于 10 厘米。它还可以与 AoA 技术相结合,为此,imec 的多径消除技术也提供了卓越的性能。
1 助理教授,2,3,4 本科生 1,2,3,4 机械工程系,1,2,3,4 戈达瓦里工程技术学院,Rajamundry-533296,安得拉邦,印度 摘要:遥控的重要性日益增加,这刺激了能够飞行的无人驾驶飞行器 (UAV) 的发展,从小型昆虫大小的无人机到大型传统飞机。这些无人机在农业、监视、环境监测、搜索和救援、航空摄影、基础设施检查和科学研究领域有着广泛的应用。本研究旨在通过使用完全自动化的工作流程提高 0 度攻角 (AOA) 下的升阻比来优化固定翼无人机的气动形状。我们的研究包括遗传算法 (GA),它模仿自然选择的进化过程以在复杂的问题空间中发现最优解,以及 PyFluent,一种强大的计算流体动力学 (CFD) 工具。这项工作分为三个阶段:初始阶段、优化阶段和模拟阶段。最佳翼型配置在 0 度 AOA 时实现 24.8 的升阻比,特别是在 40 m/s 的速度下。索引术语 - 无人机、升阻比、0 度 AOA、遗传算法 (GA)、PyFluent I. 简介
I。UWB技术从高时域的分辨率中受益,从而导致精确时间(TOF)和高分辨率通道脉冲响应(CIR)测量值。高分辨率CIR提供了有用的信息,可用于应对主要本地化挑战,例如多径传播,使UWB成为挑战环境的关键技术。UWB技术实现了几种本地化,其中高度要求到达角度(AOA)估计。AOA估计是狭窄光束无线数据传输和智能天线系统的至关重要任务,可促进光束成形[3],车辆通信[4]和室内定位[5]。与需要在锚节点和标签节点之间进行双向通信的方法不同,例如双向范围,在AOA估计中,不需要反馈链接(在自我定位中),从而可以提高系统的可扩展性和复杂性。此外,当前的UWB定位系统通常使用定时信息来确定移动标签和几个分布式锚节点之间的距离。通过在锚节点上添加其他天线和无线电模块(例如创建天线阵列),可以在每个天线元件上确定相位和到达时间,从而可以提取到达角度的信息。因此,
n [此事件]发生在[a]常规夜间维护轮班期间。[工作包括]更换左迎角 (AOA) 传感器。在更换与飞机加压部分中的此传感器相关的面板时,我监督下的某人使用了握柄长度过长的不合适紧固件,由于我在机库中执行其他维护任务而没有注意到这一点。握柄长度过长导致螺钉触底抵住螺母板,并在面板完全就位之前记录了足够的安装扭矩。我在安装后对工作进行的检查没有发现不正确的安装,在面板安装和密封后看不到该安装。当机械师对飞机进行其他维护时加压并在经过时感觉到 AOA 面板有泄漏时,发现了这个问题。他们