Daniel Durini 博士目前是 INAOE 微电子和辐射探测领域的终身研究科学家 B(相当于教授)。2019 年 9 月至 2024 年 1 月期间,他担任该研究所的研发总监。他于 2002 年获得墨西哥国立自治大学电气电子工程学士学位,2003 年获得 INAOE 微电子硕士学位,2009 年获得德国杜伊斯堡-埃森大学微电子博士学位。2004 年至 2013 年期间,他就职于德国杜伊斯堡的弗劳恩霍夫微电子电路与系统研究所 (IMS),在过去四年中,他领导了一个团队,致力于开发用于高性能光电检测设备、像素结构和成像器的特殊 CMOS 工艺模块。在担任现职之前,他曾在德国于利希研究中心中央工程、电子和分析研究所 ZEA-2 - 电子系统部任职,2015 年至 2018 年初期间,他负责开发专用于科学应用的探测器系统(闪烁探测器)。他撰写和合著了 90 多篇科学出版物,并在 CMOS 图像传感器和辐射探测器领域拥有六项专利(和两项专利申请)。他是 IEEE 高级会员,自 2014 年起成为墨西哥国家研究人员系统 (SNI) 的成员。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体靠近飞行器。在这些条件下,飞行会受到空气动力学相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。由于现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路,因此开发用于描述此类相互作用的有效计算方法仍有待改进。本研究假设,通过一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体与飞行器距离很近。在这些条件下,飞行会受到气动相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。开发用于描述此类相互作用的有效计算方法仍有待改进,因为现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路。这项研究假设,使用一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索出来。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。