对集成系统中关键单元进行有效组合的需求日益增加。SoC 系统的开发旨在提供芯片级集成,这成为集成电路发展的必然趋势,并广泛应用于智能手机、工业应用和微控制器。ARM AMBA 协议是系统各个部分之间交互的普遍采用的方式。在 AMBA 架构中,AHB 到 APB 桥接器对于在 SoC 系统中结合高性能 AHB 总线和低功耗 APB 总线做出了重要贡献。本项目旨在使用 Verilog 实现 AHB 到 APB 桥接器,从而实现这两条总线之间的稳定数据传输。所提出的 AHB 到 APB 桥接器旨在适应不同的读写策略并确保 APB 总线上外设的正常工作。该桥接器已通过 Verilog 硬件描述语言 (HDL) 实现。创建了一个测试台,其中有一个虚拟 AHB 主机和一个优化的 SRAM 作为高速 APB 外设。Verdi 仿真表明该桥接器完全符合设计意图。关键词:AHB 到 APB 桥接器;片上系统 (SoC); AMBA 协议。
这个有源机柜将通过 80 英里的光纤电缆为大约 1600 户家庭提供服务。机柜旨在为未来的升级和新增用户提供额外容量。光纤设备和电池将安装在左侧,Dominion Energy 电表和来自附近电线杆的电源安装在右侧。
I. 引言 随着嵌入式系统变得越来越复杂,高速和低功耗组件之间的有效通信变得至关重要。ARM 的 AMBA(高级微控制器总线架构)协议提供了一个标准化框架来满足这一要求。在 AMBA 中,高级高性能总线 (AHB) 支持快速数据传输,而高级外设总线 (APB) 则专注于外设的低功耗操作。为了确保这两条总线之间的无缝交互,可靠的桥接对于高效的数据传输和系统集成是必不可少的。本研究以使用 Verilog 设计和实现 AHB 到 APB 桥接为中心。该桥接促进了高性能处理器和低功耗外设之间的互操作性,旨在优化性能并最大限度地减少延迟,同时遵守 AMBA 标准。严格的验证方法确保了其在不同用例中的可靠性,解决了总线通信中的关键挑战,并促进了嵌入式系统设计的进步。
摘要 目的 癌症的表观基因组改变与免疫微环境相互作用,决定肿瘤的发展和治疗反应。我们旨在研究胃癌中表观遗传替代启动子使用对肿瘤免疫微环境的调节,并将我们的研究结果扩展到其他胃肠道肿瘤。设计 使用一种新颖的生物信息学算法 (proActiv) 量化替代启动子负荷 (APB),以从短读 RNA 测序和分为 APB 高、APB int 和 APB 低的样本推断启动子活性。进行单细胞 RNA 测序以分析肿瘤内免疫微环境。人源化小鼠癌症体内模型用于探索肿瘤动力学、替代启动子使用和人体免疫系统之间的动态时间相互作用。评估了接受免疫疗法治疗的多组胃肠道肿瘤,以确定 APB 与治疗结果之间的相关性。结果 APB high 胃癌肿瘤表达的 T 细胞溶细胞活性水平降低,并表现出免疫耗竭的特征。单细胞 RNA 测序分析证实了 APB high 肿瘤中不同的免疫群体和较低的 T 细胞比例。使用具有活跃人类免疫系统的“人源化小鼠”进行的功能性体内研究揭示了 APB 与肿瘤生长之间的明显时间关系,其中 APB high 肿瘤几乎没有人类 T 细胞浸润。对接受免疫疗法治疗的胃肠道癌患者的分析证实了 APB high 肿瘤对免疫检查点抑制的耐药性。与 APB low 相比,APB high 胃癌的无进展生存期明显较差(中位数 55 天 vs 121 天,HR 0.40,95% CI 0.18 至 0.93,p=0.032)。结论这些发现表明替代启动子的使用与肿瘤微环境之间存在关联,从而导致免疫逃避和免疫疗法耐药性。
从低成本,非易光度和高运营安全性的优点中获得的好处,可充电电池已成为大规模能源储存应用的有希望的候选人。在各种金属离子/非金属电荷载体中,质子(H +)作为电荷载体具有许多独特的特性,例如快速质子差异动力学,低摩尔质量和较小的水合离子半径,它们具有赋予水性质子电池(APB),具有正式的速率能力,长期的较低型较高的型号和出色的型号仪表仪,并具有出色的仪表仪。此外,具有结构多样性,丰富的质子存储位点和丰富资源的优势的氧化还原活性有机分子被认为是APB的有吸引力的电极材料。但是,APB中有机电极的电荷存储和传输机制仍处于起步阶段。因此,发现合适的电极材料并发现H +储存机制对于在APB中应用有机材料是显着的。在此,审查了有机材料的最新研究进度,例如小分子和APB的聚合物。此外,还提供了使用有机电极作为阳极和/或阴极的APB进行的全面摘要和评估,尤其是关于它们的低温和高功率性能,以及用于指导理性设计以及基于有机电极的APB的系统讨论。
摘要这项研究研究了源自车前草皮(Musa Paradisiaca L.)(PPB)和箭头根果皮(Maranta arundinacea)(APB)(APB)及其共聚物(COP)的生物基聚合物的开发,作为非结构合成聚合物的可持续替代品。可生物降解的聚合物提供独特的物理,化学,生物学,生物力学和降解性能,使其与环保应用高度相关。在这项工作中,PPB,APB和COP是通过物理化学分析合成和表征的,包括水分含量的确定,土壤埋葬性降解性测试以及各种仪器技术:X射线衍射(XRD),傅立叶衍射(XRD),傅立叶红外(FTIR),扫描电子显微镜(SEM)和THERMOMIMIMIMET(TGA)(TGA)(TGA)(TGA)(TGA)(TGA)(TGA)(TGA)(TGA)。通过在样品(20、15、10和5cm³)之间改变甘油含量,观察到水分含量的降低,值范围为35.70%至20.13%。30天的土壤埋葬测试显示,PPB的体重显着减轻,APB(2.17%)和COP(1.51%)的中等降解。XRD分析表明在所有样品中均存在无定形相,而FTIR光谱确认了特征官能团(OH,C-H,C = O,C = C,-CH 3和C-O),与成功的聚合物形成一致。TGA结果表明,在APB> PPB> COP的顺序下,热稳定性随甘油含量而降低。具有5cm³甘油的样品的SEM图像在APB和PPB中显示出空隙和裂缝,而COP表现出更平滑且更均匀的表面,描述了增强的界面相互作用和兼容性。关键字:箭头果皮,车前草皮,生物聚合物,甘油和淀粉。这些发现表明,生物聚合物COP提供了增加的水分吸收和出色的表面特征,并增强了生物降解性,这使其成为需要可持续和可降解材料的行业中生态友好应用的候选人。
2.1.1. AHB-Lite Crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................... 17 2.1.3. APB 桥....................................................................................................................................................................................................................... ........................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................................................ ........................................................................................................................................................................................ ........................................................................................................................................................................................ ........................................................................................................................................................................................ 17 2.1.4. 窄 IO 寄存器写入.................... ... ....................................................................................................................................................................................................................................... 18 2.2. 地址映射....................................................................................................................................................................................................... ....................................................................................................................................................................... ....................................................................................................................................................................... ....................................................................................................................................................................... ....................................................................................................................................................................................... ....................................................................................................................................................................................... ....................................................................................................................................................................................... ...24
端粒(ALT)途径的替代延长可在很大一部分癌症中保持端粒长度,这些癌症与临床不良结局相关。因此,对于为Alt Cancer制定新的治疗策略,对ALT机制有更好的了解。SUMO修饰端粒蛋白与Alt端粒相关PML体(APB)的形成,其中端粒聚集并富含DNA修复蛋白,以促进ALT中的同源性远距离DNA合成。但是,仍然未知(如果是这样),Sumo是否支持ALPB形成。在这里,我们表明,含有DNA修复蛋白的相扑凝结物在没有APB的情况下可以维持端粒。在缺乏APB的PML基因敲除Alt细胞系中,我们发现表现为PML和APB的ALT特征所必需的Sumoylation。化学诱导的端粒靶向相扑会在PML无效细胞中产生冷凝物的形成和ALT特征。这种效应需要Sumoylation和Sumo相互作用基序(SIMS)之间的相互作用。从机械上讲,Sumo诱导的效应与端粒处的DNA修复蛋白的积累有关,包括Rad52,Rad51AP1,RPA和BLM。此外,rad52可以以相关方式与BLM解旋酶合作,在端粒上富集相分离,并在端粒上富集Sumo,并促进端粒DNA合成。共同表明,Sumo凝结物形成了DNA修复因子之间的协作,以支持没有PML的ALT端粒维护。鉴于Sumoylation抑制剂在癌症治疗中的有前途的影响,我们的发现表明它们在扰动端粒癌细胞中的驱动端粒维持中的潜在使用。
执法部门需要及时并确保访问服务,以便在任何地方和何时停止和减少犯罪。应对这些需求,咨询政策委员会(APB)建议向联邦调查局(FBI)(FBI),刑事司法信息服务(CJIS)部门授权在1998年扩大现有的安全管理结构。通过共享的管理理念管理,CJIS安全政策包含信息安全要求,指南和协议,反映了执法和刑事司法机构的意愿,以保护来源,传播,存储,存储和产生刑事司法信息(CJI)。2002年的《联邦信息安全管理法》为APB批准的管理,运营和技术安全要求提供了进一步的法律依据,要求保护CJI并扩展,并扩展了启用刑事司法社区提供服务所需的硬件,软件和基础架构。
执法部门需要及时并确保访问服务,以便在任何地方和何时停止和减少犯罪。应对这些需求,咨询政策委员会(APB)建议向联邦调查局(FBI)(FBI),刑事司法信息服务(CJIS)部门授权在1998年扩大现有的安全管理结构。通过共享的管理理念管理,CJIS安全政策包含信息安全要求,指南和协议,反映了执法和刑事司法机构的意愿,以保护来源,传播,存储,存储和产生刑事司法信息(CJI)。2002年的《联邦信息安全管理法》为APB批准的管理,运营和技术安全要求提供了进一步的法律依据,要求保护CJI并扩展,并扩展了启用刑事司法社区提供服务所需的硬件,软件和基础架构。