非小细胞肺癌 (NSCLC) 是肺癌的一个主要亚型,占全球癌症相关死亡的大多数,约占肺癌的 80% 至 85%。丝裂原活化蛋白激酶 (MAPK) 信号通路是 NSCLC 的一个重要方面,并有助于推进这种癌症的治疗。针对 Ras/Raf/MEK/ERK 通路是一种有前途的 NSCLC 治疗替代方法,本综述将重点介绍这种方法。靶向药物的引入彻底改变了这种癌症患者的治疗。当与当前系统生物学驱动的策略相结合时,将非癌症药物重新用于新的治疗领域是一种经济高效且有效的技术,可提高发现新药理活性的结果。本文重点介绍了成功的尖端技术,同时重点介绍了 NSCLC 靶向疗法。最终的挑战是将这些重新利用的药物整合到 NSCLC 患者的治疗方案中,以潜在地提高肺癌治愈率。
简介心肌病 (CM) 是一组异质性心肌疾病,可分为肥厚性 CM (HCM)、扩张性 CM (DCM) 和限制性 CM (RCM) (1–4)。已鉴定出 CM 的遗传因素,且有 100 多个基因与不同类型的 CM 相关 (5, 6)。已建立动物模型并用于发现关键信号通路和治疗策略。已鉴定出至少 7 条具有治疗潜力的 CM 信号通路,包括丝裂原活化蛋白激酶 (MAPK) 信号转导、mTOR 信号转导、β -肾上腺素能受体信号转导、磷酸二酯酶 5 (PDE5) 信号转导、组蛋白去乙酰化酶 (HDAC) 信号转导、Ca 2+ /钙调蛋白依赖性激酶 II 信号转导和钙调磷酸酶-活化 T 细胞核因子 (Cn-NFAT) 信号通路 (7–9)。例如,mTOR 是一种丝氨酸/苏氨酸蛋白激酶,在调节心肌细胞蛋白质稳态方面起着关键作用 (10–12);通过药理学或遗传学方法部分抑制 mTOR 可对几种类型的心肌病产生心脏保护作用,包括 lamp2 相关 HCM (13)、bag3 相关和层蛋白 A/C 相关 DCM (14, 15) 以及贫血和阿霉素诱发的心肌病 (DIC) (16)。相反,已发现 MAPK 几乎在每种应激和激动剂诱发的肥大刺激下都会激活,并以独特的方式调节心脏离心和向心生长之间的平衡 (17, 18)。 MAPK 的激活会导致离心性肥大并促进肌细胞延长,而抑制细胞外信号调节激酶 (ERK) 通路会减弱对压力超负荷的肥大反应 (19)。MYH7,也称为 β - 肌球蛋白重链,是第一个被确定的 CM 致病基因,后来被确定为约 18% 的 HCM 病例的病因 (20–22)。在人类中,MYH7 与 MYH6 串联位于 14 号染色体上,MYH7 是位于 MYH6 上游的主要成体亚型。在小鼠中,Myh7 和 Myh6 也串联位于 14 号染色体上;然而,上游的 Myh7 基因
白鲜碱 (Dictamnine, Dic) 是一种从白鲜根皮中分离出来的天然小分子呋喃喹啉生物碱,据报道具有抗癌特性。然而,人们对 Dic 的直接靶蛋白和抗癌机制知之甚少。在目前的研究中,发现 Dic 可在体外和体内抑制肺癌细胞的生长,并通过抑制受体酪氨酸激酶 c-Met 的磷酸化和活化来减弱 PI3K/AKT/mTOR 和丝裂原活化蛋白激酶 (MAPK) 信号通路的活化。此外,使用细胞热位移分析 (CETSA) 和药物亲和力响应靶标稳定性 (DARTS) 分析证实了 Dic 与 c-Met 的结合。在所有测试的癌细胞系中,Dic 对 c-Met 依赖性 EBC-1 细胞增殖的抑制作用最强 (IC 50 = 2.811 μ M)。值得注意的是,Dic 显示出协同作用,可提高表皮生长因子受体酪氨酸激酶抑制剂 (EGFR-TKI) 耐药肺癌细胞对吉非替尼和奥希替尼的化学敏感性。这些结果表明,Dic 是一种 c-Met 抑制剂,可作为治疗肺癌的潜在治疗剂,尤其是针对 EGFR TKI 耐药和 c-Met 依赖性肺癌。
包含完整的蛋白酶抑制剂鸡尾酒(Roche,巴塞尔,瑞士)。将提取物通过十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,并转移到聚偏二氟化物(PVDF)膜上。膜用5%的非脂肪牛奶或5%牛血清白蛋白(BSA)封闭,然后与针对以下抗原的主要抗体孵育:KRAS:KRAS(#12063-1; Proteintech,Rosemont,Rosemont,IL,IL,USA),PIK3CA,PIK3CA(PIK3CA),PIK3CA(#4249; Celling Signaling Technology; Celling Signaling Technology,Signal,Danvers,Danvers,Ma),Ma,Ma),MA,AKT(29),#29; phospho-AKT (Ser473; #4060; Cell Signaling Technology), MTOR (#2983; Cell Signaling Technology), S6K (#9202; Cell Signaling Technology), phospho-S6K (T389; #9205; Cell Signaling Technology), MEK (#9126; Cell Signaling Technology), ERK (#4695; Cell Signaling Technology), phospho-ERK (Thr202/Tyr204;#4370;细胞信号技术),
1个黑色素瘤免疫学和肿瘤学小组,悉尼大学百年研究所,澳大利亚新南威尔士州Camperdown。2澳大利亚黑色素瘤学院,澳大利亚悉尼乌鸦巢,澳大利亚。 3中央临床学校,悉尼大学,澳大利亚新南威尔士州坎珀纳市,澳大利亚4彼得·麦卡勒姆癌症中心,澳大利亚维多利亚州墨尔本5彼得·麦卡卢姆爵士肿瘤学系,墨尔本大学,帕克维尔大学,维多利亚大学,澳大利亚维多利亚大学,澳大利亚帕克维尔大学,澳大利亚6号病理学。 7 Maurice Wilkins分子生物发现中心,新西兰奥克兰Symonds Street 3A级2级,麦格理大学医学,健康与人类科学学院生物医学科学系8。 9马萨诸塞州皮肤病学系皮肤生物学研究中心,哈佛大学综合医院2澳大利亚黑色素瘤学院,澳大利亚悉尼乌鸦巢,澳大利亚。3中央临床学校,悉尼大学,澳大利亚新南威尔士州坎珀纳市,澳大利亚4彼得·麦卡勒姆癌症中心,澳大利亚维多利亚州墨尔本5彼得·麦卡卢姆爵士肿瘤学系,墨尔本大学,帕克维尔大学,维多利亚大学,澳大利亚维多利亚大学,澳大利亚帕克维尔大学,澳大利亚6号病理学。7 Maurice Wilkins分子生物发现中心,新西兰奥克兰Symonds Street 3A级2级,麦格理大学医学,健康与人类科学学院生物医学科学系8。9马萨诸塞州皮肤病学系皮肤生物学研究中心,哈佛大学综合医院
摘要 突变选择性 KRAS G12C 抑制剂,例如 MRTX849 (adagrasib) 和 AMG 510 (sotorasib),已证明对 KRAS G12C 突变癌症(包括非小细胞肺癌 (NSCLC))有效。然而,临床获得性耐药 KRAS G12C 抑制剂的潜在机制仍未确定。为了开始定义获得性耐药的机制谱,我们描述了一名患有 KRAS G12C NSCLC 的患者,该患者对 MRTX849 产生了多克隆获得性耐药,在四个基因(KRAS、NRAS、BRAF、MAP2K1)的连续无细胞 DNA 中出现了 10 种异质性耐药性改变,所有这些改变都汇聚在一起重新激活 RAS-MAPK 信号传导。值得注意的是,研究人员发现一种新的 KRAS Y96D 突变会影响 MRTX849 和其他非活性状态抑制剂结合的 switch-II 口袋,这种突变会干扰关键的蛋白质-药物相互作用,并在工程化和患者衍生的 KRAS G12C 癌症模型中产生对这些抑制剂的耐药性。有趣的是,一种功能独特的新型三重复合物 KRAS G12C 活性状态抑制剂 RM-018 保留了结合和抑制 KRAS G12C/Y96D 的能力,并且可以克服耐药性。
AIM:升高的炎症信号传导已显示在糖尿病肾脏疾病(DKD)中起重要作用。我们以前开发了一种新的抗炎化合物LG4。在本研究中,我们检验了以下假设:LG4可以通过抑制炎症并确定基本机制来预防DKD。方法:使用链蛋白酶诱导的1型糖尿病小鼠开发DKD并评估LG4对DKD的影响。为了确定LG4的潜在靶标,合成了与生物素连接的LG4并进行蛋白质组微阵列筛选。在HG挑战的SV40MES13细胞中研究了LG4的细胞机制。结果:尽管LG4治疗对体重和血糖水平没有影响,但它明显逆转了高血糖诱导的T1DM小鼠肾脏的病理变化和纤维化。重要的是,通过LG4处理,通过NF-κB激活和TNFα和IL-6过表达证明了高血糖诱导的肾脏炎症。蛋白体微阵列筛选表明JNK和ERK是LG4的直接结合蛋白。lg4显着降低了HG诱导的JNK和ERK磷酸化以及随后在体内和体外的NF-κB激活。此外,LG4与JNK或ERK抑制剂的存在中没有在HG挑战的中敏细胞中显示出进一步的抗炎作用。结论:LG4通过抑制ERK/JNK介导的糖尿病小鼠的炎症表现出重新保护活性,表明LG4可能是DKD的治疗剂。关键字:吲哚-2-羧酰胺衍生物,糖尿病肾脏疾病,炎症,MAPK,NF-κB
摘要◥ras/raf/mek/erk(MAPK)和pi3k/akt信号通路影响涉及癌症的几个细胞功能,使它们成为有吸引力的药物靶标。我们描述了一种新型的多重元素 - 用于定量PI3K/AKT和MAPK途径中蛋白质蛋白质的同工型特异性磷酸化,以评估小型动力学变化。在具有验证的抗体试剂验证的Luminex平台上开发了ERK1/2,MEK1/2,AKT1/2/3和RPS6的ERK1/2,MEK1/2,AKT1/2/3和RPS6的总蛋白质和特异性磷酸化水平的同工型特异性测定。多重分析表现出令人满意的分析性能。使用选定药物处理的异种移植模型进行拟合验证。在PC3和HCC70异种移植肿瘤中,PI3K B抑制剂AZD8186在单剂量后4至7小时抑制Akt1,Akt2和RPS6的磷酸化,但水平返回到
有丝分裂原激活的蛋白激酶(MAPK)级联信号系统在整个真核生物的演化过程中相对保守,并参与了生长,发育和代谢的调节。在这项研究中,矮番茄植物被用作研究材料。首先,通过定量RT-PCR在野生型植物中测量SLMAPK6的组织特异性表达。结果表明,Slmapk6在茎,叶和花的组织中高度表达,但在根,萼片和水果的组织中以低水平表达。第二,Slmapk6-敲除线CRISPR-3和CRISPR-7是通过CRISPR-CAS9技术和农业介导的转换获得的。与野生型相比,突变线CRISPR-3和CRISPR-7显示出显着的表型特征,例如腋窝芽和真实叶子数量增加,茎增厚和更长的传单。In addition, to explore the molecular mechanism by which MAPK regulates axillary bud growth, we also showed that SlMAPK6 positively regulates the strigolactone synthesis genes SlCCD7 and SlCCD8 and the gibberellin (GA) synthesis genes GA20ox3 and GA3ox1 and negatively regulates the axillary bud development-related genes Ls , BL and BRC1b / TCP8和GA合成抑制基因GAI。因此,Slmapk6似乎调节了strigolactone和ga的合成,以诱导番茄腋芽的生长和发育。
Ethnopharmacological relevance: 22 β -hydroxytingenone (22-HTG) is a quinonemethide triterpene isolated from Salacia impressifolia (Miers) A. C. Smith (family Celastraceae), which has been used in traditional medicine to treat a variety of diseases, including dengue, renal infections, rheumatism and cancer.但是,尚未阐明22-HTG和黑色素瘤细胞中潜在的分子机制的抗癌作用。研究的目的:本研究研究了SK-MEL-28人黑色素瘤细胞中22-HTG的凋亡诱导和抗转移性势力。材料和方法:首先,评估了22-HTG在培养的癌细胞中的体外细胞毒性活性。然后,使用黑色素瘤细胞(SK-MEL-28)中的锥虫蓝色测定法确定细胞活力,其随后是细胞周期,膜联蛋白V-FITC/碘化碘化物测定(膜联蛋白/PI),以及用于评估线粒体膜潜力的测定,使用反应性牛(Recatige oxygen cytomry)评估线粒体膜潜力。使用Acridine橙/溴化乙锭(AO/BE)染色的荧光微副本。RT-QPCR以评估BRAF,NRA和KRAS基因的表达。在重建的人类皮肤的三维(3D)模型中评估了22-HTG的抗侵入性潜力。结果:22-HTG降低了SK-MEL-28细胞的生存力,并导致形态学变化,因为细胞收缩,染色质凝结和核碎裂。此外,22-HTG引起了凋亡,通过用AO/BE和Annexin/pi染色来证明,这证明了这一点。凋亡可能是由于线粒体不稳定性引起的,而无需ROS产生。通过22-HTG处理降低了BRAF,NRA和KRAS的表达,它们是黑色素瘤发育中重要的生物标志物。在重建的皮肤模型中,22-HTG能够降低真皮中黑色素瘤细胞的侵袭能力。