1. 欢迎来到 64P 合同职业领域!没有其他人比集体合同高级领导和职业领域团队更关心 64P 军官的发展了——该团队由空军合同职能经理 (FM)、高级军事和民事合同领导、合同发展团队、职业领域经理 (CFM)、副助理部长(合同)助理部长(采购)(SAF/AQC)的工作人员、空军人事中心 (AFPC) 的 64P 军官分配团队 (OAT)、指挥官、主管和主管组成——他们都致力于每位 64P 军官从最初进入职业领域到退休或离职的发展。将合同职业现场团队对其 64P 军官的刻意培养与每位军官成功展示本计划(附件 1)中概述的能力和任务相结合,将确保空军合同继续其光荣传统,即培养国防部 (DoD) 技术最精湛的军官合同队伍。特别强调了 B 节第 2.2 段和所有子段中的资格,以进一步描述如何衡量合格的 AFSC 以及如何根据核心任务要求的完成情况进行升级。
分别安装在旋转窑的上游和下游。当前的水泥植物使用多阶段的旋风预热器在到达窑炉之前将原材料混合物预热。随着预热阶段的数量增加,植物的废热电位也会减少。典型的预热排气温度在280oC至450oC之间,典型的AQC排气温度从250oC到330oC不等。发电的范围从25kWh/t到WHR应用的熟料的45kWh/t。我们的蒸汽轮机在全球水泥厂成功运作,从而产生了废热的动力;无论是棕地还是格林菲尔德水泥植物建筑,Triveni都有专业知识,可以提出蒸汽轮机解决方案来推动客户成功。这是印度安装22 MW蒸汽轮机的案例。自2020年8月以来,蒸汽轮机发电机一直在可靠地运行,并允许主要水泥播放器以全容量运行(每年700万吨),从而降低了对电网的依赖,并提高了工厂的收益和效率。
词汇表 ACAFA - 阿克纠宾斯克民航飞行学院 ACT - 机场控制塔 AeMS - 航空气象站(民用) AMS - 航空气象站 ANO - 自治非商业组织 A & AE - 航空和航空电子设备 AS - 机场服务 CRT - 坠机和救援队 CRTr - 坠机和救援训练 CRW - 坠机和救援工作 CRS - 坠机和救援站 AMC - 航空维修中心 АMB - 飞机维修基地 AS - 航空中队 FS - 飞行安全 MM - 中间标志 SSN - 春夏导航 SSP - 春夏季 PEB - 体能评估委员会 AQC - 高级资格委员会 DFB - 部门消防队 ASCC - 辅助启动控制中心 APU - 辅助动力装置 AT - 航空运输 CA - 民航 HV - 水平能见度 PAS - 公共广播系统 SSRICA - 国家民航科学研究院 GPT - 下滑道发射器 ArCC - 区域控制中心 AppCC - 进近控制中心 TCC - 滑行控制中心 OM - 外标志 US -统一系统 ZAO - 封闭式股份公司 ASDC - 空军中队副指挥官 AES - 航空工程服务 ICAO - 国际民用航空组织 ILS - 仪表着陆系统 MP - 维护人员 ASC - 空军中队指挥官 ATC - 空中交通管制
量子信息领域发展迅速,因为它有望解决各种传统计算机无法解决的计算问题。然而,构建一台功能齐全的量子计算机是一项艰巨的任务,因为它的性能受到不可避免的退相干的影响。退相干消除了物质的量子性质,从而消除了量子计算相对于传统计算的优势。然而,对于特定的应用,一些精心设计的退相干有助于幺正量子演化,可能会大有裨益。在本文中,我讨论了两个这样的例子:量子随机游动 (QSW) 和混合量子经典退火 (HQCA)。QSW 将幺正量子游动的概念推广到额外的非幺正演化。这产生了定向游动。QSW 可以是连续时间的,也可以是离散时间的。在这项工作的第一部分,我提出了两种算法,用于在相干量子计算机上模拟特定的 QSW。第一种适用于连续时间 QSW,第二种适用于离散时间 QSW。在这项工作的第二部分,我提出了一种称为混合量子经典退火的方法来提高绝热量子计算 (AQC) 的性能,该方法应该找到某个目标汉密尔顿量的基态。HQCA 应该通过将量子比特系统耦合到工程热浴来增加最终基态概率。对单个量子比特和两个量子比特的 HQCA 性能进行了数值测试。
量子力学的测量公设指出,在测量可观测量 ˆ o 时,只能观察到其特征值 on ,并且系统的状态将在测量之后立即投影到相应的特征态 | on ⟩ ,对于该特征态 ˆ o | on ⟩= on | on ⟩ 。此外,Born 规则规定,对于初始量子态 | ψ 0 ⟩ ,出现这种结果的概率为 pn = |⟨ on | ψ 0 ⟩| 2 。是否能够推导出该规则并将其从量子力学公设中剔除仍然是一个基本问题[1]。从量子信息处理的角度来看,这种谱投影的一般构造也具有实际意义。例如,参考文献[2] 构建了一种量子行走方法来实现这一点,并强调了其在执行优化问题的量子模拟退火 (QSA) 算法的关键步骤中的实用性[3]。后者可以作为绝热量子计算 (AQC) [4,5] 的替代方法。事实上,标准量子相位估计 (QPE) [6] 及其变体 [7–9] 也可以在系统不处于本征态时实现近似谱投影。QPE 在很多量子信息处理应用中都至关重要 [6],包括因式分解,以及与本文更相关的文献 [2] 中的量子行走谱测量,以及制备热吉布斯态的相关方法 [10–13]。标准 QPE 使用 O(tg) 个受控 c − U2k 形式酉门(k = 0 至 tg − 1)对相位值的 tg 个二进制数字进行编码(以 2π 为单位),并且它需要 O(t2g) 个门在逆量子傅里叶变换中检索相位 [6]。至于 QPE 的精度,为了使相位在 m 个二进制数字中准确,且成功概率至少为 1 − ϵ ,所需的辅助量子比特总数为 tg = m + log 2 (2 ϵ + 1 / 2 ϵ ) [ 6 ] 。换句话说,使用 tg 个辅助量子比特可以使相位值在 tg − log 2 (2 ϵ + 1 / 2 ϵ ) 二进制数字中准确。因此,相位的精度受到用于表示相位值以及用作光谱投影子程序时可用的辅助量子比特数量的限制
随着近期量子设备的问世和量子霸权实验的突破,量子计算在过去几年中受到了众多科学学科的广泛关注。尽管有优秀的教科书和讲义,如 [NC00、KSV02、Nak08、RP11、Aar13、Pre99、DW19、Chi21],但这些材料通常涵盖量子计算的所有方面,包括复杂性理论、量子设备的物理实现、量子信息理论、量子误差校正、量子算法等。这几乎没有空间来介绍如何使用量子计算机来解决科学和工程计算中具有挑战性的计算问题。例如,在初次阅读 Nielsen 和 Chuang [NC00] 的经典教科书(当然,只是部分章节)后,我既惊叹于量子计算机的潜在能力,也对其实际适用范围感到惊叹:我们真的要建造一台量子计算机来执行量子傅里叶变换还是执行量子搜索?量子相位估计是连接量子计算机和几乎所有科学计算问题(如求解线性系统、特征值问题、最小二乘问题、微分方程、数值优化等)的唯一桥梁吗?得益于量子算法发展的重大进展,现在应该不言而喻,上述两个问题的答案都是“否”。这是一个快速发展的领域,许多重要进展都是在过去几年中取得的。然而,许多此类发展都涉及理论和技术,对于仅具有量子计算基本知识的人来说可能难以理解。我认为,值得以一种更容易理解的方式,将这些令人兴奋的结果传递给更广泛的社区,让他们对使用未来的容错量子计算机解决科学问题感兴趣。这是加州大学伯克利分校数学系 2021 年秋季学期应用数学研究生专题课程《科学计算的量子算法》中使用的一套讲义。这些讲义只关注与科学计算密切相关的量子算法,特别是矩阵计算。事实上,从量子算法动物园 1 的角度来看,这只是一小类量子算法。这意味着许多重要的材料被有意遗漏了,例如量子复杂性理论、数论和密码学中的应用(尤其是 Shor 算法)、代数问题中的应用(如隐藏子群问题)等。对这些主题感兴趣的读者可以查阅一些上述优秀的教科书。由于这些材料旨在融入一个学期的课程,其他几个与科学计算相关的主题没有包括在内,特别是绝热量子计算 (AQC) 和变分量子算法 (VQA)。这些材料可能会添加到未来版本的讲义中。据我所知,
