从现有的(基本)内核构造新内核的一种很酷的方法是通过图形。令G =(V,e)为有向的无环形图(DAG),其中V表示节点,E表示弧(有向边)。为方便起见,让我们假设有一个没有传入弧的源节点s,并且有一个没有传出弧的接收器节点t。我们将基础内核κe(即,一个函数κe:x×x→r)放在每个弧E =(u→v)∈E上。对于每条路径p =(U 0→U 1→···→U D)使用U I -1→U i是E中的弧,我们可以将路径P的核定义为沿路径的核的乘积:
本文探讨了基于技术增强的学习(IBL)如何影响学生的语言获取以及英语作为外语(EFL)的动机的演变。此外,本研究提出了一项关于西班牙语和英语主题协作的建议,利用翻译语言来建立学生的L1和L2之间的联系并减少课程重复。efl将自己作为学习者的机会,可以使用基于查询的学习(IBL)作为解决问题的情况的主要驱动力。因此,调查将托尔金的文学界作为研究的主要主题和主题,以及机器人技术(Ozobot),IBL和游戏化的学习管理系统(Classcraft)作为主要方法论。通过一系列诊断和熟练度测试(包括机器人支持的讲故事活动和ARCS动机测试),收集了有关两个分析变量的定量数据。结果表明,在所有四个参数中都提高了语言获取和动机。此外,Ozobot显示了在基本功能级别上使用学生使用的快速适应期,并有助于创造性的讲故事。结果将有助于缩小EFL学习中检测到的知识差距,因为主要用于科学学习。
近年来,外尔半金属(WSM)在固态研究中引起了广泛关注。它们的独特性质是由电子能带结构中导带和价带的单个接触点决定的,该结构具有线性电子色散。[1,2] 在这种所谓的外尔锥中,电子表现为无质量的准相对论费米子,并由狄拉克方程的相应解外尔方程描述。[3] 这些外尔节点总是以相反手性的成对出现,在动量空间中分开并由拓扑保护的表面态(费米弧)连接。 [4,5] 这种特殊的电子结构产生了许多材料特性,例如高电子迁移率、[6,7] 低温超导性、[8–10] 巨大的磁阻、[11,12] 强烈的异常霍尔效应、[7,11,13] 以及 Adler–Bell–Jackiw 异常。[14–17]
有符号有向图 (或简称 sidigraph) 由一对 S = ( D , σ ) 组成,其中 D = ( V , A ) 为基础有向图,σ : A →{ 1 , − 1 } 是有符号函数。带有 +1 ( − 1) 符号的弧称为 S 的正 (负) 弧。一般而言,S 的弧称为有符号弧。sidigraph 的符号定义为其弧符号的乘积。如果 sidigraph 的符号为正 (负),则称其为正 (负)。如果 sidigraph 的所有弧均为正 (负),则称其为全正 (全负)。如果 sidigraph 的每个环均为正,则称其为环平衡的,否则为非环平衡的。在本文中,我们假设环平衡(非环平衡)环为正(负)环,并用 C + n(C − n)表示,其中 n 是顶点数。对于有向图,我们用 uv 表示从顶点 u 到顶点 v 的弧。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。 , n − 1 } ∪{ vnv 1 } 组成一个有向圈 C n 。如果 sidigraph 的底层图是连通的,则该 sidigraph 是连通的。如果连通的 sidigraph 包含唯一的单个有向圈,则它是单环 sidigraph。如果连通的 sidigraph 恰好包含两个单个有向圈,则它是双环 sidigraph。我们考虑具有 n ( n ≥ 4) 个顶点的双环有符号有向图类 S n ,它的两个有符号有向偶圈是顶点不相交的。对于 sidigraph S = ( D , σ ),如果它有一条从 u 到 v 的有向路径和一条从 v 到 u 的有向路径,其中 ∀ u , v ∈V ,那么它是强连通的。S 的最大强连通子图称为 sidigraph S 的强组件。
随着辅助技术于 1990 年被纳入 PL 101-476 (IDEA),人们明确表示要将辅助技术设备和服务作为专门为有教育障碍的学生设计的教学的一个组成部分,以帮助提高或保持功能能力。这引发了许多关于辅助技术的评估、培训、资金和使用的问题。招生和发布委员会 (ARC) 经常难以确定是否有资格使用辅助技术以及如何将其使用整合到 IEP 中。这仍然是每个孩子的个人决定,但 ARC 可以回答一些程序问题,以减少向合格学生提供辅助技术的障碍和延误。家长和专业人士在合作尝试获得他们认为可以为孩子打开学习之门的东西时,都感到沮丧。返回页首
密歇根湖物质平衡项目 (LMMBP) 由美国环境保护署 (USEPA) 和大湖国家计划办公室 (GLNPO) 发起,旨在确定管理和修复湖盆有毒化学物质的策略。在生态系统方法中,物质平衡框架被认为是实现这一目标的最佳手段,GLNPO 请求美国环境保护署研究与开发办公室 (ORD) 的协助,以促进和制作数学模型,这些模型可以解释某些化学物质的来源、汇、运输、命运和食物链生物累积。这种方法过去曾被使用过,它建立在污染沉积物评估与修复 (ARCS) 计划和福克斯河下游/格林湾物质平衡项目中的建模工作之上。证明了此类研究的可行性以及由此产生的大型河流和大型海湾污染物替代管理方案,并有必要将其合理地扩展到整个密歇根湖接收水体和主要支流。该项目有大量合作者,通过将联邦、州、地方、私人和学术的努力和资源集中在一个共同的目标上,所取得的成就比这些实体独立行动要多得多。
A.P.,印度。 摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。 X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。 形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。 紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。 还检查了介电参数的频率和组成依赖性。 使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。 cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。 关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。A.P.,印度。摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。还检查了介电参数的频率和组成依赖性。使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。
密歇根湖物质平衡项目 (LMMBP) 由美国环境保护署 (USEPA) 和大湖国家计划办公室 (GLNPO) 发起,旨在确定管理和修复湖盆有毒化学物质的策略。在生态系统方法中,物质平衡框架被认为是实现这一目标的最佳手段,GLNPO 请求美国环境保护署研究与开发办公室 (ORD) 的协助,以促进和制作数学模型,这些模型可以解释某些化学物质的来源、汇、运输、命运和食物链生物累积。这种方法过去曾被使用过,它建立在污染沉积物评估与修复 (ARCS) 计划和福克斯河下游/格林湾物质平衡项目中的建模工作之上。证明了此类研究的可行性以及由此产生的大型河流和大型海湾污染物替代管理方案,并有必要将其合理地扩展到整个密歇根湖接收水体和主要支流。该项目有大量合作者,通过将联邦、州、地方、私人和学术的努力和资源集中在一个共同的目标上,所取得的成就比这些实体独立行动要多得多。
密歇根湖质量平衡项目 (LMMBP) 由美国环境保护署 (USEPA) 大湖国家计划办公室 (GLNPO) 发起,旨在确定管理和修复湖盆中有毒化学物质的策略。在生态系统方法中,质量平衡框架被认为是实现这一目标的最佳手段,GLNPO 请求美国环境保护署研究与开发办公室 (ORD) 的协助,以促进和制作考虑某些化学物质的来源、汇、运输、命运和食物链生物累积的数学模型。这种方法过去曾被使用过,并以受污染沉积物评估与修复 (ARCS) 计划和福克斯河下游/绿湾质量平衡项目中的建模工作为基础。此类研究的可行性以及由此产生的针对大河和大海湾污染物的替代管理方案得到了证实,并有必要将其合理扩展到整个密歇根湖接收水体和主要支流。该项目有大量合作者,通过将联邦、州、地方、私人和学术的努力和资源集中在一个共同目标上,比这些实体独立行动要取得更多的成就。
密歇根湖物质平衡项目 (LMMBP) 由美国环境保护署 (USEPA) 和大湖国家计划办公室 (GLNPO) 发起,旨在确定管理和修复湖盆有毒化学物质的策略。在生态系统方法中,物质平衡框架被认为是实现这一目标的最佳手段,GLNPO 请求美国环境保护署研究与开发办公室 (ORD) 的协助,以促进和制作数学模型,这些模型可以解释某些化学物质的来源、汇、运输、命运和食物链生物累积。这种方法过去曾被使用过,它建立在污染沉积物评估与修复 (ARCS) 计划和福克斯河下游/格林湾物质平衡项目中的建模工作之上。证明了此类研究的可行性以及由此产生的大型河流和大型海湾污染物替代管理方案,并有必要将其合理地扩展到整个密歇根湖接收水体和主要支流。该项目有大量合作者,通过将联邦、州、地方、私人和学术的努力和资源集中在一个共同的目标上,所取得的成就比这些实体独立行动要多得多。